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Trees Whose Second Largest Eigenvalue Does Not Exceed
√

5+1
2

B. Lj. Mihailović

Abstract: The second largest eigenvalue (λ2) provides significant information on character-
istics and structure of graphs. Therefore, finding bounds for λ2 is a topic of interest in many
fields. In this paper we prove one general theorem about values of λ2 of graphs with a cut-vertex
and after that we determine all trees with the property λ2 ≤ 1+

√
5

2 .
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1 Introduction

In this paper we consider connected simple graphs, i.e. undirected, with no loops or
multiple edges. When we use the term subgraph (subtree), it means the induced subgraph
(subtree). Naturally, H is a supergraph of G if G is a subgraph (induced!) of H. If A
is (0,1)-adjacency matrix of a graph G, then its characteristic polynomial is defined by
PG(λ ) = det(λ I−A). The roots of the characteristic polynomial are called the eigenvalues
of G. The family of eigenvalues is the spectrum of G. A is a real and symmetric matrix,
and, therefore, its eigenvalues are real. We assume their non-increasing order: λ1(G) ≥
λ2(G)≥ . . .≥ λn(G). The largest eigenvalue λ1(G) is called the index of G. For connected
graphs λ1(G)> λ2(G) holds. If graph G is not connected, then its spectrum is the union of
the spectra of its components.

The second largest eigenvalue of a graph is a subject of investigations in spectral graph
theory, but also in computer science and various fields across the science in which networks
as mathematical models are widely used.

In spectral graph theory, graphs with the second largest eigenvalue bounded by a con-
stant a ∈ R have been investigated by many authors. Some of the bounds considered so far
are: a = 1

3 [1], a =
√

2−1 [6], a =
√

5−1
2 [3], a = 1 [4], a =

√
2 [5], a =

√
3 [5]. Reflexive

graphs (a = 2) have been investigated in many articles, for example [8, 9, 10, 11, 12] where
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Theorem 1 of [10] (further, RS-theorem) was often used to prove whether a connected graph
with a cut-vertex is reflexive or not.

In this paper we shall prove a generalization of this theorem and then use it in deter-
mining all trees whose second largest eigenvalue does not exceed

√
5+1
2 . This bound for the

second largest eigenvalue has not been considered before.
The paper is structured in the following way. In Section 2, we present the main tools

used in our investigations including the RS-theorem. Section 3 brings the Generalized RS-
theorem, along with two auxiliary lemmas. In section 4, applying this theorem and by
further analysis of remaining cases, we determine all trees whose second largest eigenvalue
does not exceed

√
5+1
2 .

2 Auxiliary results and the RS-theorem

The following theorem shows the interrelation between the spectra of a graph and its
induced subgraph.

The Interlacing Theorem (e.g.[2]) Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of a
simple graph G and µ1 ≥ µ2 ≥ . . . ≥ µn the eigenvalues of its induced subgraph H. Then
the inequalities λn−m+i ≤ µi ≤ λi (i = 1,2, . . . ,m) hold.

If G is a connected graph and m = n−1, then λ1 > µ1 ≥ λ2 ≥ µ2 ≥ . . ..
Schwenk’s Lemma (e.g.[6]) Given a graph G, let C(v) and C(uv) denote the set of all

cycles containing a vertex v and an edge uv of G, respectively. Then

1. PG(λ ) = λPG−v(λ )−∑u∈Ad j(v) PG−v−u(λ )−2∑C∈C(v) PG−V (C)(λ ),

2. PG(λ ) = PG−uv(λ )−G−v−u (λ )−2∑C∈C(uv) PG−V (C)(λ ),

where Ad j(v) denotes the set of neighbours of v, while G−V (C) is the graph obtained from
G by removing the vertices belonging to the cycle C.

The only connected graphs for which λ1 = 2 holds are called Smith graphs [13]. For
every connected graph exactly one of the following statements hold: 1) a graph is a Smith
graph, 2) a graph is a proper subgraph of some Smith graphs and its index is less than 2, 3)
a graph is a proper supergraph of some of Smith graphs and its index is greater than 2.

It can be established effortlessly in many cases whether a graph with a cut-vertex is
reflexive or not using a theorem of [10] (Z. Radosavljevic, S. Simic) which for convenience
we will call RS-theorem.

RS-theorem [10] Let G be a graph with a cut-vertex u.

1. If at least two components of G− u are supergraphs of Smith graphs, and if at least
one of them is a proper supergraph, then λ2(G)> 2.

2. If at least two components of G− u are Smith graphs, and the rest are subgraphs of
Smith graphs, then λ2(G) = 2.
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3. If at most one component of G−u is a Smith graph, and the rest are proper subgraphs
of Smith graphs, then λ2(G)< 2.

After removing a cut-vertex of the graph G, we get several new connected graphs. They
are comparable to the Smith graphs, in the sense that they are either their subgraphs or
supergraphs.

In many cases the theorem gives the answer about the reflexivity of the graph, but there
is one case when it does not, namely when after the removal of the cut-vertex u we get one
proper supergraph, and the rest are proper subgraphs of Smith graphs. In these cases other
techniques are used, but often, at the subgraph level analysis, the RS-theorem proves useful
again.

In former work, many classes of reflexive graphs have been described. Since reflexivity
is a hereditary property, i.e. every subgraph preserves it, it is natural to present classes of
resulting graphs through the sets of maximal reflexive graphs. In this case maximal means
that its supergraphs are not reflexive. It turned out that Smith graphs play an essential role
also in the construction of maximal reflexive graphs [7, 8, 9, 11, 12] By generalizing the
RS-theorem we get a useful instrument for comparing λ2 with arbitrary a > 0 for many
graphs with a cut-vertex.

3 The Generalized RS-theorem

In this section we will prove the Generalized RS-theorem. Before that, we present two
lemmas that will be used in the proof of the theorem.

Lemma 3.1 Consider graph G in Fig. 1, where G1 is a connected graph with the index
a, a > 0, and u is an extra vertex connected to some of the vertices of the graph G1
(v1,v2, . . . ,vm). Then, PG(a)< 0, and, consequently, λ2(G)< a < λ1(G).

G1 u

v1

v2

vn

G

Fig. 1.

Proof: By the Interlacing theorem λ1(G) > a and λ2(G) ≤ a. Applying the Schwenk’s
lemma at vertex u, we get the characteristic polynomial of the graph G:

PG(λ ) = λPG1(λ )−
m

∑
i=1

PG1−vi(λ )−2 ∑
C∈C(u)

PG−C(λ ).
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Now, λ1(G1 − vi)< a holds, implying PG1−vi(a)> 0 for i = 1, . . .m, and also PG−C(a)> 0
holds, since graph G−C (C ∈C(u)) is a subgraph of the graph G1−vi for some i = 1, . . .m.
Therefore, PG1(a) = 0 implies PG(a)< 0 and λ2(G)< a. 2

Lemma 3.2 Let G be a graph with n vertices and the eigenvalues λ1(G)≥ λ2(G)≥ λ3(G)≥
. . .≥ λn−1(G)≥ λn(G). Let α = λm+1(G) = λm+2(G) = . . .= λm+k(G) be the eigenvalue of
multiplicity k. If the polynomial QG(λ ) is defined by the relation PG(λ ) = (λ − α)kQG(λ ),
then sgn(QG(α)) = (−1)m.

Proof: The characteristic polynomial of the graph G is factorized in the following way:
PG(λ ) = ∏m

i=1(λ −λi) · (λ −α)k ∏n
i=m+k+1(λ −λi). Then,

QG(λ ) =
m

∏
i=1

(λ −λi) ·
n

∏
i=m+k+1

(λ −λi).

For i ∈ {1,2, . . . ,m} α −λi < 0, and sgn(∏m
i=1(α −λi)) = (−1)m.

For i ∈ {m+k+1,m+k+2, . . . ,n} α −λi > 0, and, consequently, ∏n
i=m+k+1(α −λi)> 0.

Thus we have proved sgn(QG(α)) = (−1)m. 2

Here are some simple and useful consequences of the Lemma 3.2. In a connected graph
G, if λ2 = α , then QG(α)< 0; or, if λ3 = α and λ2 > λ3, then QG(α)> 0.

Theorem 3.3 (GT) Let G be the graph in Fig. 2, with a cut-vertex u. Let components of the
graph G−u, the graphs G1, . . . ,Gn, be connected graphs for which λ2(Gi)≤ a, i = 1, . . . ,n,
holds. For a > 0 it holds:

1. If at most one of the graphs G1, . . . ,Gn has index a, and for the rest of them the indices
are less than a, then λ2(G)< a.

2. If at least two of the graphs G1, . . . ,Gn have indices a, and for the rest of them the
indices are not greater than a, then λ2(G) = a.

3. If only one of the graphs G1, . . . ,Gn has index greater than a, and at least one of the
remaining graphs has index a, then λ2(G)> a.

Proof: 1. If λ1(G1), λ1(G2), . . . λ1(Gn) < a, then λ1 (
∪n

i=1 Gi) < a and, therefore, by the
Interlacing theorem, λ2(G) < a. Now consider the case when exactly one of the graphs
Gi has index a, say λ1(G1) = a, and λ1(G2), λ1(G3), . . . λ1(Gn) < a. λ1(G1) = a implies
λ2(G1)< a. Then, λ1 (

∪n
i=1 Gi) = a and λ2 (

∪n
i=1 Gi)< a, and, therefore, by the Interlacing

theorem, λ2(G) ≤ a. λ1(G1) = a implies PG1(a) = 0, and λ1(G2), λ1(G3), . . . λ1(Gn) < a
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G1

G2

Gn

u

G

Fig. 2.

implies PG2(a), PG3(a), . . . PGn(a) < a. Applying the Schwenk’s lemma at the vertex u of
the graph G, we compute the characteristic polynomial of G.

PG(a) = aPG1(a) · . . . ·PGn(a)

−
(
∑v∈Ad ju∩G1 PG1−v(a)+2∑C∈C(u)∩G1 PG1−V (C)(a)

)
PG2(a) · . . . ·PGn(a)

− PG1(a)
(
∑v∈Ad ju∩(G−G1) PG−G1−u−v(a)+2∑C∈C(u)∩(G−G1) PG−G1−V (C)(a)

)
= −

(
∑v∈Ad ju∩G1 PG1−v(a)+2∑C∈C(u)∩G1 PG1−V (C)(a)

)
PG2(a) · . . . ·PGn(a).

Let us introduce the graph K = G− (G2 ∪ . . .∪Gn). Then,

PK(a) = aPG1(a)−∑v∈Ad ju∩G1 PG1−v(a)−2∑C∈C(u)∩G1 PG1−V (C)(a)

= −∑v∈Ad ju∩G1 PG1−v(a)−2∑C∈C(u)∩G1 PG1−V (C)(a).

Then, PG(a) = PK(a) ·PG2(a) · . . . ·PGn(a). PK(a) < 0 by the Lemma 3.1, and therefore,
PG(a)< 0, implying λ2(G)< a.

2. A clear consequence of the Interlacing Theorem.
3. If the index of one of the graphs G1, . . . ,Gn is greater than a, say λ1(G1) > a, and

one is equal to a, say λ1(G2) = a, the Interlacing theorem implies λ2(G) ≥ a. To prove
that a strong inequality λ2(G) > a holds, let us notice that it is sufficient to prove it in
the case when graph G− u consists only of the two mentioned components G1 and G2. If
λ2(G1) > a, then λ2(G1 ∪G2) > a, and, therefore, λ2(G) > a. Now, let us consider the
case λ2(G1) = a. Let us introduce the graphs H = G−G1 and K = G−G2. Applying the
Schwenk’s lemma at the vertex u of the graphs H and K we get:

PK(λ ) = λPG1(λ )−∑v∈Ad ju∩G1 PG1−v(λ )−2∑C∈C(u)∩K PK−V (C)(λ )

PH(λ ) = λPG2(λ )−∑v∈Ad ju∩G2 PG2−v(λ )−2∑C∈C(u)∩H PH−V (C)(λ ).

For the graph G we get:

PG(λ ) = λPG1(λ )PG2(λ )

−
(
∑v∈Ad ju∩G1 PG1−v(λ )+2∑C∈C(u)∩K PK−V (C)(λ )

)
PG2(λ )

−
(
∑v∈Ad ju∩G2 PG2−v(λ )+2∑C∈C(u)∩K PH−V (C)(λ )

)
PG1(λ ).
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Finally, PG(λ ) = PK(λ )PG2(λ ) +PG1(λ )PH(λ )− λPG1(λ )PG2(λ ). Since PG2(a) = 0, we
have PG(a) = PG1(a)PH(a). Since λ1(G2) = a , Lemma 3.1 implies PH(a)< 0.

a) If λ2(G1)< a< λ1(G1), then PG1(a)< 0, implying PG(a)> 0, and, therefore, λ2(G)>
a.

b) Let us consider the case λ2(G1) = λ3(G1) = . . . = λk(G1) = a and λk+1(G1) < a,
k ≥ 2 . By the Interlacing theorem we have λ2(K) ≥ a. Similarly, if λ2(K) > a, then
λ2(G)> a.

Now, let us consider the case λ2(K) = a. By the Interlacing theorem λ3(K) = λ4(K) =
. . . = λk(K) = a holds. Let us introduce the polynomial QK(λ ) by PK(λ ) = (λ − 1)k−1 ·
QK(λ ). Similarly, we have PG1(λ ) = (λ − 1)k−1 ·QG1(λ ) and PG2(λ ) = (λ − 1) ·QG2(λ ).
Notice that, by Lemma 3.2, QG1(a)< 0. Now,

PG(λ ) = (λ −1)k−1 ·QK(λ ) · (λ −1) ·QG2(λ )

+ (λ −1)k−1 ·QG1(λ ) ·PH(λ )

− λ · (λ −1)k−1 ·QG1(λ ) · (λ −1) ·QG2(λ ).

Let us introduce the polynomial QG(λ ) by PG(λ ) = (λ −1)k−1 ·QG(λ ). Then, QG(a) =
QG1(a) ·PH(a). Since, QG1(a)< 0 and PH(a)< 0, we get QG(a)> 0, implying λ2(G)> a.
2

The Generalized RS-theorem brings improvement of the Interlacing theorem for the
cases 1. and 3.

4 Trees whose second largest eigenvalue does not exceed
√

5+1
2

Let us determine all trees T with the property λ2(T )≤
√

5+1
2 , by describing all maximal

trees for this property.
The bound

√
5+1
2 has not been considered before. We shall denote it by φ . This number

is the greater root of the polynomial φ2 −φ − 1, hence, it is an index of the path P4. For
every tree one and only one of the following statements holds: 1) a tree is the path P4, 2) a
tree is a proper subgraph of the path P4, 3) a tree is a proper supergraph of the path P4, 4) a
tree is the star K1,3. The only trees for which λ1 < φ holds are paths P1, P2 and P3. On the
other hand, minimal forbidden trees for the property λ1 ≤ φ are path P5 and star K1,3 (for
both of these trees λ1 =

√
3 holds).

By T∞ we shall denote the family of trees T with a cut-point u, for which all components
of T − u are paths P1, P2, P3 and P4. For these graphs, by GT, λ2 ≤ φ holds. Also, we
shall say that a tree is GT-decidable for λ2 = φ if we can find whether its second largest
eigenvalue is less than φ , equal to φ , or greater than φ , only by applying GT to one of its
cut-points. All graphs of the family T∞ are GT-decidable for λ2 = φ . Graphs whose at least
one component is path P4 are GT-decidable, for λ2 = φ , too.
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In certain cases, the sign of the PT (φ) will be used to compare values λ2(T ) and φ . This
is explained by the next Lemma, which is a simple consequence of the Interlacing theorem.

Lemma 4.1 For a tree T , let λ2(T ) < φ < λ1(T ). Let τ be the tree T extended with a
pendant edge. Then the following statements hold:

1. If Pτ(φ)< 0, then λ2(τ)< φ .

2. If Pτ(φ) = 0, then λ2(τ) = φ .

3. If Pτ(φ)> 0, then λ2(τ)> φ .

In the next Lemma we also give values of the PT (φ) for some simple trees.

Lemma 4.2 1) PP1(φ) = PP2(φ) = φ , 2) PP3(φ) = 1, 3) PP4(φ) = 0, 4) PPn+5(φ) =−PPn(φ),
n ∈ N, 5) PPn+10k(φ) = PPn(φ), n,k ∈ N, 6) PK1,r(φ) = φr−1(φ2 − r) = φr−1(φ +1− r).

Proof: These are simple consequences of PP3(φ) =∏n
k=1(φ−2cos kπ

n+1), Schwenk’s lemma
and the fact that φ2 = φ +1. 2

Now, we shall describe all trees T with the property λ2(T ) ≤
√

5+1
2 that are not GT-

decidable for φ .

Theorem 4.3 Let T be a tree which is not GT-decidable for φ . Then, λ2(T )≤ φ if and only
if T is a subgraph of some of the trees T1–T59 (Figure 3).

Proof: Using GT we easily get that λ2(Pn) > φ , for n ≥ 10 (Pn is shown in Figure 3,
with appropriate labels). In this case, the middle vertex (or one of two such vertices) is
considered as a cut-point. Therefore, a diameter of a tree with the property λ2 ≤ φ must
be less than 9. If the diameter of a tree is 8, the tree is GT-decidable for φ . If it is a path
P9, then λ2 = φ (cut-vertex is again the middle vertex and two components are paths P4). If
it is a supergraph of P9, then λ2 > φ . Let us notice that a tree is GT-decidable for φ (and
belongs to the family T∞) if the diameter of a tree is 2, too. We shall continue by discussing
the length of the diameter.

Let diam(T ) = 7. Then T contains a path P8, which we observe as a basic tree, whose
vertices (different from end-vertices) may be additionally loaded with some subtrees. At
least one of the vertices v2, v3 and v4 (or v5, v6 and v7) must be additionally loaded, other-
wise a tree will be GT-decidable for φ . If there is a pendant edge added to any of the vertices
v2, v3, v6 or v7 the tree is GT-decidable, too. The vertex v4 is considered as a cut-vertex and
we get λ2(T ) > φ (components are K1,3 and P3) or λ2(T ) = φ (components are two paths
P3). Therefore, there must be at least a pendant edge added to each of the vertices v4 and
v5. For such tree T λ2(T ) <

√
5+1
2 holds. By making further extensions, we can get three

different maximal trees, T1, T2 and T3 (Figure 4). For all of them, λ2 = φ holds. This can
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T20 T21 T22 T23 T24 T25 T26 T27 T28 T29

T30 T31 T32 T33 T34 T35

T36 T37 T38 T39

T40 T41 T42 T43 T44 T46 T47 T48 T49T45

T50 T51 T52 T53 T54 T55 T56 T57

T58 T59

T1Pn

v1

v2

v3

vn T2 T3

T4 T5 T6 T7 T8 T9

T10 T11 T12 T13 T14 T15 T16 T17 T18

T19

Fig. 3.

be easily proved by using Schwenk’s lemma (and also checked by using NEWGRAPH).
For example, for the tree T1, by applying Schwenk’s lemma to the vertex v4 and by using
φ2 −φ −1 = 0, we get PT1(φ) =−φ3 +φ3 +φ2 +φ −φ3 = 0. For any subtree of the tree
T1, we can check in the same way that its characteristic polynomial at the point φ is less
than zero. Hence, if we add a pendant edge to any vertex of the tree T1, the characteristic
polynomial of this new tree at the point φ shall exceed 0. Therefore, T1 is a maximal tree
for the property λ2 ≤

√
5+1
2 .

Let diam(T ) = 6. The basic tree is the path P7. At least one of the vertices v2, v3 and v4
(or v4, v5 and v6) must be additionally loaded, otherwise the tree will be GT-decidable for
φ . If there is a pendant edge added to a vertex v2, then the vertices v5 and v6 may not be
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additionally loaded (otherwise, the tree is GT-decidable for φ and λ2 > φ). Then the vertex
v4 must be additionally loaded. By further extensions and using Lemma 4.1 we can get two
maximal trees, T4 and T5, for which λ2 = φ holds. Let the vertex v2 be of the degree 2 and
let the vertex v3 be additionally loaded. Then the degrees of the vertices v5 and v6 have to be
2, too. Otherwise, if we observe v4 as a cut-vertex, we get GT-decidable graph. Therefore,
the vertex v4 must be additionally loaded. Further on, we can discuss possible degrees of
the vertices v3 and v4.

Let d(v3) = 3 and d(v4) = r+2. If there is a pendant edge added to the vertex v3, the
tree becomes GT-decidable for φ . If there is a path Pn (n > 3) added to a vertex v3, the
diameter of the graph becomes grater than 6. Therefore, there must be the path P3 added to
the vertex v3. Let nothing but pendant edges be added to v4. Then we get P(φ) = φr+1 −
φr+2 + rφr−1 +φr+1. Using φ2 −φ − 1 = 0, P(φ) = φr−1(r− 2φ − 1) holds. Therefore,
r ≤ 4. For r = 4, P(φ) < 0. There is no possible extension τ such that Pτ(φ) < 0, so we
get the maximal tree T6. For r = 3, r = 2 and r = 1 the only maximal trees that we get by
further extending are the trees T7, T8 and T9, respectively.

Let pendant edges be added to the vertices v3 and v4 and let d(v4) = 3 and d(v3) = r+2.
Applying Schwenk’s lemma to v3 we get P(φ) = −φφr+1 +φr+1 + rφr −φr+2. Using
φ2 −φ − 1 = 0, P(φ) = φr(r−φ − 2) holds. Hence, r ≤ 3. For r = 3, the only possible
extension is the tree T10. For r = 2, there are four possible extensions: T11, T12, T13 and T14.

If the only loaded vertex is v4, then this vertex must be an end-vertex of a bridge which
connects the basic tree P7 and another tree τ whose index is greater than φ . If the tree τ
is the path P4, then it must be leaned on its middle vertex, otherwise the diameter becomes
greater than 6. For the whole tree λ2 < φ holds, but the only possible extension leads to
the tree T8. If the tree τ is the star K1,3, it must be leaned on its middle vertex (otherwise,
λ2 > φ). Hence, λ2 of the whole tree is less than φ , and this case allows 4 new extensions:
the trees T15–T18.

Let diam(T ) = 5. The basic tree is the path P6. At least one of the vertices v2, v3 and v4
(or v3, v4 and v5) must be additionally loaded, otherwise the tree will be GT-decidable for
φ . If there is a pendant edge added to the vertex v2, then at least one of the vertices v3, v4
or v5 has to be additionally loaded. If it is v5, we get maximal tree T19. If it is v4 and if it is
loaded with a pendant edge, the tree becomes GT-decidable. Let d(v4) = 4 (for d(v4) = 5,
P(φ) becomes greater than 0). There are two possible maximal extensions – T20 and T21.
In the case of d(v4) = 3, there has to be a path P3 leaned on the vertex v4 and the only
maximal extension is T22. Now let only v2 and v3 be loaded. Let d(v2) = i and d(v3) = j.
Using Scwenk’s lemma we get P(φ) = φ2+i(− jφ j−1)− (i+ 1)φ i(− jφ j−1)− φ i+ j+1 =
φ i+ j+1((i+ 1) j − ( j + 1)(φ + 1)). Hence, if there is only a pendant edge leaned on v3,
maximum degree of v2 is 6 and the tree T23 is maximal. For d(v2) = 5, the only maximal
extension is T24. For d(v2) = 4, we get 4 maximal extensions: T25–T28. For d(v2) = 3, v3
must be an end-vertex of a bridge and the other end-vertex must be the middle vertex of the
star K1,3 (otherwise, the tree remains GT-decidable, or its diameter exceeds 5). But this case
produces only maximal tree T28. Let d(v2) = d(v5) = 2, d(v3) = i+2 and d(v4) = j+2. As
before, we get P(φ) = φ i+ j(i j− i− j−φ). Hence, min(i, j) ≤ 2. Let i ≤ j. If i = 1 there
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has to be the path P3 leaned on v3 and then j ≤ 5 holds. In this case, there are 4 maximal
trees T29–T32. For i = 2, there are 3 maximal trees T33–T35.

If v3 is the only loaded vertex, then it must be an end-vertex of a bridge which connects
the basic tree P6 and another tree τ whose index is greater than φ . Because of diam(T ) = 5,
the tree τ is the star K1,3. For the whole tree P(φ) < 0 holds, but further extending brings
only trees that are already described - T23–T28.

Let diam(T ) = 4. The basic tree is the path P5. Vertices v2 and v4 are to be loaded only
by pendant edges. Let d(v2) = i, d(v3) = 2 and d(v4) = j. As before, using Schwenk’s
lemma we get P(φ) = φ i+ j−3(i j− (i+ j)(φ +1)+3φ +1), and hence, min(i, j)≤ 3. Oth-
erwise the tree becomes GT-decidable for φ . Let i ≤ j. If i = 3, then j ≤ 5. Let i = 3: for
j = 5, we get maximal tree T36; for j = 4, the vertex v3 can be additionally loaded and by
further extending we get maximal trees T37–T40. For j = 3, there must be a bridge whose
end-vertex is v3 and the star K1,3 is leaned on the other end. This tree is not maximal, but it
can be extended in only one way, which gives maximal tree T41. If j = 2, then d(v3) ≥ 3.
For d(v3) = 3, the path P3 must be leaned on the vertex v3 and P(φ) = φ j−2( j− 3φ − 3)
holds, and hence, j ≤ 7. For j = 7 we get maximal tree T42. Let d(v3) = k ≥ 4. Then
from P(φ) = φ j+k−4(k j−3 j−2k+5+2φ −kφ) we get j ≤ 6. For j = 6 there is only one
maximal tree T43, for j = 5 only one maximal tree T44, while for j = 4 we get 4 maximal
trees T45–T48. For j = 3 and j = 2, there must be a bridge to the star K1,3 leaned on the
vertex v3 which leads to maximal trees T49–T57.

Let diam(T ) = 3. Then there are only pendant edges leaned on the vertices v2 and v3.
Let d(v2) = i−2 and d(v3) = j− 2, hence min(i, j) ≥ 4 (otherwise such a tree belongs to
the family T∞). As before, we get P(φ) = φ i+ j−4((i−2)( j−2)−φ(i+ j−4)). Therefore,
min(i, j) ≤ 5. Let i ≤ j: for i = 4, we get jmax = 10 and for i = 5, jmax = 5, which brings
maximal trees T58 and T59. 2

From the previous results it follows the main theorem.

Theorem 4.4 A tree T has the property λ2(T )≤
√

5+1
2 if and only if it belongs to the family

of trees T∞ or it is a subgraph of some of the trees T1–T59.
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in maximal reflexive cacti, Discrete Math., Vol. 308, 2-3 (2008), 355–366.
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