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Second order complex differential equations with analytic
coefficients in the unit disc

Mohamed Amine Zemirni, Benharrat Belaı̈di

Abstract: In this article, we investigate the growth of solutions of second order complex dif-
ferential equations in which the coefficients are analytic in the unit disc with lower [p,q]-order.
We’ve proved similar results as in the case of complex differential equations in the whole com-
plex plane with usual [p,q]-order. We define also new type of order applied on the coefficients
to study the growth of solutions.
Keywords: Complex differential equation, analytic function, [p,q]-order.

1 Introduction and main results

Nevanlinna theory has appeared to be powerful tool in the field of complex differential
equations. First research in this field was started by H. Wittich and his students in the 1950’s
and 1960’s, see [22]. After that many authors have investigated the complex differential
equation

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = 0 (1)

and achieved many valuable results when the coefficients A0(z),A1(z), . . . ,Ak−1(z) are en-
tire functions. The theory of complex differential equations in the unit disc has been devel-
oped since 1980’s, see [19]. In the year 2000, Heittokangas in [9] firstly investigated the
growth and oscillation theory of equation (1) when the coefficients A0(z),A1(z), . . . ,Ak−1(z)
are analytic functions in the unit disc D := {z ∈C : |z|< 1} by introducing the definition of
the function spaces and his results also gave some important tools for further investigations
on the theory of meromorphic solutions of equations (1). After that, many articles (see e.g.
[1, 2, 3, 10, 15, 16, 21]) focused on this topic. In this article, we continue to focus on the
same topic by considering the second order complex differential equation

f ′′+A(z) f ′+B(z) f = 0 (2)
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when A(z) and B(z) are analytic functions in the unit disc D.
Throughout this article, we will use the standard notations and fundamental results of

the Nevanlinna value distribution theory of meromorphic functions, for more details on
Nevanlinna theory and its applications in complex differential equations in complex plane
and in unit disc, we refer to [8, 9, 14, 15, 24].

Before discussing the previous results and before we state our main results, we recall
definitions and preliminary remarks concerning meromorphic and analytic functions in D.

For a meromorphic function f in the unit disc D, the order of growth of f is defined by

σ( f ) := limsup
r→1−

log+ T (r, f )
log 1

1−r

and the lower order of f is defined by

µ( f ) := liminf
r→1−

log+ T (r, f )
log 1

1−r

.

Here, T (r, f ) is the Nevanlinna characteristic function of f which is expressed as follows

T (r, f ) =
1

2π

∫ 2π

0
log+

∣∣ f (eiφ)
∣∣ dφ +

∫ r

0

n(t, f )−n(0, f )
t

dt +n(0, f ) logr,

where log+ x := max{0, logx} (x ≥ 0), n(r, f ) denotes the number of poles of f in {z : |z| ≤
r} and each pole counted according to its multiplicity. By definitions of the order and the
lower order of growth of a meromorphic function f , it is clear that µ( f ) ≤ σ( f ) holds in
general. A meromorphic function for which order and lower order are the same is said to
be of regular growth, and the meromorphic function which is not of regular growth is said
to be of irregular growth.

We start with a result due to Gundersen.

Theorem 1.1 ([6]). Let A(z) and B(z) be two entire functions with ρ(A) < ρ(B). Then
every nontrivial solution of the equation (2) is of infinite order.

Here, ρ( f ) denotes the order of growth of f in complex plane which is defined by

ρ( f ) := limsup
r→+∞

logT (r, f )
logr

.

Heittokangas, modified a reasoning due to Gundersen in the complex plane to get the fol-
lowing result.

Theorem 1.2 ([9]). Let A(z) and B(z) be two analytic functions with σ(A) < σ(B). Then
every nontrivial solution of the equation (2) is of infinite order.



Second order complex differential equations with analytic coefficients in the unit disc 3

Recently, Long, Heittokangas and Ye, in [18], gave a similar result to Theorem 1.1
when the usual orders are replaced with the corresponding lower orders, and they proved
the following theorem.

Theorem 1.3 ([18]). Let A(z) and B(z) be two entire functions with µ(A) < µ(B). Then
every nontrivial solution of the equation (2) is of infinite order.

Here, µ( f ) denotes the order of growth of f in complex plane which is defined similarly
as the order but for “liminf” instead of “limsup”.

Remark 1.4. It is mentioned in [5, p. 238] that for any fixed µ and ρ satisfying 0 ≤ µ ≤
ρ ≤ ∞ there exists an entire function with order ρ and lower order µ . Hence, in Theorem
1.1 and Theorem 1.3, if ρ(A) = ρ(B) with A is of irregular growth and B is of regular
growth, or, µ(A) = µ(B) with A is of regular growth and B is of irregular growth, then we
easily conclude that every nontrivial solution of the equation (2) is of infinite order.

Now, we ask a natural question as follows : Is it possible to obtain the same conclusions
on the solutions in the unit disc as in Theorem 1.3 by replacing the usual orders with lower
orders ? In this article, we will discuss and answer on this question and other questions
that will be mentioned later. So, the main purpose of this article is to investigate growth of
solutions of the differential equation (2) under conditions on the coefficients in using lower
order; actually, we show that possibly the similar results can be obtained when the usual
orders are replaced with lower orders. In fact, we will prove our main results in using the
general definitions of order and lower order that are the [p,q]-order and lower [p,q]-order.
For that, we need to recall the following definitions and notations. Let us define inductively
for r ∈ [ 0,+∞), exp0 r : = r, exp1 r: = er and expn+1 r: = exp(expn r) , n ∈ N. For all r
sufficiently large, we define log0 r: = r, log1 r: = logr and logn+1 r: = log(logn r) , n ∈ N.
Moreover, we denote by exp−1 r: = logr and log−1 r: = exp1 r.

In [11, 12] Juneja, Kapoor and Bajpai have investigated some properties of entire func-
tions of [p,q]-order, lower [p,q]-order and obtained some results about their growth. In
[17], in order to maintain accordance with general definitions of the entire function f of
iterated p-order [13, 14], Liu, Tu and Shi gave a minor modification of the original defini-
tion of the [p,q]-order given in [11, 12]. Further, in [1, 2], Belaı̈di defined [p,q]-order of
analytic and meromorphic functions in unit disc D. For conveniences, we list the following
concepts.

Definition 1.5 ([1, 2]). Let p ≥ q ≥ 1, and f be a meromorphic function in D. Then, the
[p,q]-order of f is given by

σ[p,q] ( f ) := limsup
r→1−

log+p T (r, f )

logq
1

1−r

.
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For an analytic function f in D, we also define

σM,[p,q] ( f ) := limsup
r→1−

log+p+1 M(r, f )

logq
1

1−r

,

where M(r, f ) = max{| f (z)| : |z|= r}.

Definition 1.6 ([10, 21]). Let p ≥ q ≥ 1, and f be a meromorphic function in D. Then, the
lower [p,q]-order of f is given by

µ[p,q]( f ) := liminf
r→1−

log+p T (r, f )

logq
1

1−r

.

For an analytic function f in D, we also define

µM,[p,q] ( f ) := liminf
r→1−

log+p+1 M(r, f )

logq
1

1−r

.

Definition 1.7 ([11]). A function for which [p,q]-order and lower [p,q]-order are the same
is said to be of regular [p,q]-growth, and the function which is not of regular growth is said
to be of irregular [p,q]-growth.

Definition 1.8 ([10, 21]). Let p ≥ q ≥ 1, and f be a meromorphic function in D with [p,q]-
order 0 < σ[p,q] ( f )< ∞. Then, [p,q]-type of f is given by

τ[p,q] ( f ) := limsup
r→1−

log+p−1 T (r, f )(
logq−1

1
1−r

)σ[p,q]( f )
.

For an analytic function f in D, we also define the M− [p,q]-type of f with M− [p,q]-order
0 < σM,[p,q] ( f )< ∞ by

τM,[p,q] ( f ) := limsup
r→1−

log+p M(r, f )(
logq−1

1
1−r

)σM,[p,q]( f )
.

Definition 1.9 ([10]). Let p ≥ q ≥ 1, and f be a meromorphic function in D with lower
[p,q]-order 0 < µ[p,q] ( f )< ∞. Then, lower [p,q]-type of f is given by

τ [p,q] ( f ) := liminf
r→1−

log+p−1 T (r, f )(
logq−1

1
1−r

)µ[p,q]( f )
.

For an analytic function f in D, we also define the lower M − [p,q]-type of f with lower
M− [p,q]-order 0 < µM,[p,q] ( f )< ∞ by

τM,[p,q] ( f ) := liminf
r→1−

log+p M(r, f )(
logq−1

1
1−r

)µM,[p,q]( f )
.
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Remark 1.10. It is easy to see that 0 ≤ σ[p,q] ( f ) ≤ +∞. If f is non-admissible, i.e.,
T (r, f ) = O

(
log 1

1−r

)
, then σ[p,q] ( f ) = 0 for any p ≥ q ≥ 1. We note that σ[1,1]( f ) = σ( f )

(order of growth), σ[2,1]( f ) = σ2( f ) (hyper-order) and σ[p,1]( f ) = σp( f ) (iterated p-order).

Proposition 1.11. Let f be an analytic function in D of [p,q]-order. Then, the following
statements hold :

(i) If p = q = 1, then σ ( f )≤ σM ( f )≤ σ ( f )+1, see [20, p. 205].
(ii) If p = q ≥ 2 and σ[p,q]( f )< 1, then σ[p,q] ( f )≤ σM,[p,q] ( f )≤ 1, see [21].
(iii) If p = q ≥ 2 and σ[p,q]( f ) ≥ 1, or p > q ≥ 1, then σ[p,q] ( f ) = σM,[p,q] ( f ), see

[1, 21].

Similarly, we can get the following proposition.

Proposition 1.12. Let f be an analytic function in D of [p,q]-order. Then, the following
statements hold :

(i) If p = q = 1, then µ ( f )≤ µM ( f )≤ µ ( f )+1.
(ii) If p = q ≥ 2 and µ[p,q]( f )< 1, then µ[p,q] ( f )≤ µM,[p,q] ( f )≤ 1.
(iii) If p = q ≥ 2 and µ[p,q]( f )≥ 1, or p > q ≥ 1, then µ[p,q] ( f ) = µM,[p,q] ( f ).

Latreuch and Belaı̈di in [16], see also [4, Lemma 3.7], proved the following theorem.

Theorem 1.13 ([4]). Let p ≥ q ≥ 1 be integers. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic
functions in D satisfying

max
{

σ[p,q] (A j) : j = 1, . . . ,k−1
}
< σ[p,q] (A0) .

Then every nontrivial solution f of (1) satisfies σ[p,q] ( f ) = +∞ and

σ[p,q] (A0)≤ σ[p+1,q] ( f )≤ max
{

σM,[p,q] (A j) : j = 0, . . . ,k−1
}
.

Furthermore, if p > q then
σ[p+1,q] ( f ) = σ[p,q] (A0) .

Tu and Huang in [21] proved the following theorem when the dominant coefficient is
A0 with lower [p,q]-order instead of usual [p,q]-order.

Theorem 1.14 ([21]). Let p ≥ q ≥ 1 be integers. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic
functions in D satisfying

max
{

σM,[p,q] (A j) : j = 1, . . . ,k−1
}
< µM,[p,q] (A0) .

Then every nontrivial solution f of (1) satisfies µ[p+1,q] ( f ) = µM,[p,q] (A0) .
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In the next, we consider the second-order complex differential equation (2), and we
show that the similar conclusions can be made when the usual orders in previous theorems
are replaced with lower orders. In fact, we prove the following result.

Theorem 1.15. Let A(z) and B(z) be two analytic functions in D with µ[p,q](A)< µ[p,q](B).
Then, every nontrivial solution f of the equation (2) satisfies the following statements :

(i) If p = q = 1, then σ( f ) = +∞ and σ2( f )≥ µ2( f )≥ µ(B).
(ii) If p ≥ q ≥ 2, then σ[p,q]( f ) = ∞ and σ[p+1,q]( f )≥ µ[p+1,q]( f )≥ µ[p,q](B).

Remark 1.16. The statement (i) in Theorem 1.15, is considered as a completion of the
Theorems 1.1, 1.2 and 1.3.

Remark 1.17. From Theorems 1.2, 1.13 and 1.15 and by Definition 1.7, if σ[p,q](A) =
σ[p,q](B) with A is of irregular [p,q]-growth and B is of [p,q]-regular growth, or, µ[p,q](A) =
µ[p,q](B) with A is of regular [p,q]-growth and B is of irregular [p,q]-growth, then we easily
conclude that every nontrivial solution f of the equation (2) is of infinite [p,q]-order and
σ[p+1,q]( f )≥ µ[p,q](B).

Belaı̈di and Latreuch in [4], Tu and Huang in [21] used the concept of [p,q]-type to
investigate the growth of solutions of equation (2), they proved the following theorems.

Theorem 1.18 ([4, Lemma 3.11]). Let p ≥ q ≥ 1 be integers, and let A(z) and B(z) be two
analytic functions in D with σ[p,q](A) = σ[p,q](B) > 0 and 0 < τ[p,q](A) < τ[p,q](B) < +∞.
Then every nontrivial solution f of (2) satisfies σ[p,q] ( f ) = +∞ and

σ[p,q] (B)≤ σ[p+1,q] ( f )≤ max
{

σM,[p,q] (A) ;σM,[p,q] (B)
}
.

Furthermore, if p > q then
σ[p+1,q] ( f ) = σ[p,q] (B) .

Theorem 1.19 ([21]). Let p ≥ q ≥ 1 be integers. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic
functions in D satisfying

max
{

σM,[p,q] (A j) : j = 1, . . . ,k−1
}
≤ σM,[p,q] (A0)<+∞

and
max

{
τM,[p,q] (A j) : j = 1, . . . ,k−1

}
< τM,[p,q] (A0) .

Then every nontrivial solution f of (1) satisfies σ[p+1,q] ( f ) = σM,[p,q] (A0) .

Hu and Zheng in [10], used both the lower [p,q]-order and lower [p,q]-type on the
dominant coefficient A0(z), and obtained the following theorem.



Second order complex differential equations with analytic coefficients in the unit disc 7

Theorem 1.20 ([10]). Let p,q be integers such that p > q ≥ 2, and Ak−1(z), . . . ,A1(z),
A0(z) ̸≡ 0 be analytic functions in D with 0 < µ = µ[p,q] (A0) ≤ σ[p,q] (A0) < ∞. Assume
that

max
{

σ[p,q] (A j) : j = 1, . . . ,k−1
}
≤ µ[p,q] (A0)

and that

max
{

τ[p,q] (A j) : σ[p,q] (A j) = µ[p,q] (A0) , j = 1, . . . ,k−1
}
< τ [p,q] (A0) = τ < ∞.

If f ̸≡ 0 is a solution of (1), then we have µ[p+1,q]( f )= µ[p,q](A0)≤σ[p,q] (A0)=σ[p+1,q] ( f ) .

According to Theorem 1.15, the following question is naturally asked. What happen
when µ[p,q](A) = µ[p,q](B) in Theorem 1.15 ? to answer on this question, we prove the
following theorem.

Theorem 1.21. Let p ≥ q ≥ 1 be integers and let A(z) and B(z) be two analytic functions
in D with 0 < µ[p,q](A) = µ[p,q](B)< ∞ and 0 < τ [p,q](A)< τ [p,q](B)< ∞. Then, every non-
trivial solution f of the equation (2) satisfies σ[p,q]( f ) = ∞ and σ[p+1,q]( f )≥ µ[p+1,q]( f )≥
µ[p,q](B).

Remark 1.22. It should be mentioned that Wu and Zheng in [23] gave some results about
growth of solutions of (1) in using lower p-iterated order and lower p-iterated type. So,
Theorem 1.21 generalizes Theorem 3.1 in [23], for second-order differential equation to
[p,q]-order.

Now, the question is : What can be said about the growth of solution f of (2) when
σ[p,q](A)=σ[p,q](B) and τ[p,q](A)= τ[p,q](B), or µ[p,q](A)= µ[p,q](B) and τ [p,q](A)= τ [p,q](B)
?

Hamouda in [7], to study the growth of meromorphic solutions of differential equations
with finite p-iterated order in complex plane, introduced new type of growth (see [7, p. 46])
and obtained an interesting result ([7, Theorem 1.13]). According to the definition of this
new type of growth, we introduce a new definition of type of growth that we note τ∗

[p,q]( f )
related to [p,q]-growth of meromorphic function f in the unit disc, as follows.

Definition 1.23. For 1 ≤ q ≤ p, let f be a meromorphic function of finite [p,q]-order in D
such that 0 < σ[p,q] ( f ) = σ < ∞ and 0 < τ[p,q] ( f ) = τ < ∞, we define τ∗

[p,q]( f ) by

τ∗
[p,q]( f ) = limsup

r→1−

log+p−2 T (r, f )

exp
(

τ
(
logq−1

1
1−r

)σ
) .

By the same way, we define this new type of order in lower case τ∗
[p,q]( f ) for a meromorphic

function f where 0 < µ[p,q] ( f ) = µ < ∞ and 0 < τ [p,q] ( f ) = τ < ∞ by

τ∗
[p,q]( f ) = liminf

r→1−

log+p−2 T (r, f )

exp
(

τ
(
logq−1

1
1−r

)µ
) .
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For an analytic function f in D such that 0 < σM,[p,q] ( f ) = σM < ∞ and 0 < τM,[p,q] ( f ) =
τM < ∞, we also define τ∗

M,[p,q]( f )

τ∗
M,[p,q]( f ) = limsup

r→1−

log+p−1 M(r, f )

exp
(

τM
(
logq−1

1
1−r

)σM
) ,

and for an analytic function f in D such that 0< µM,[p,q] ( f )= µM <∞ and 0< τM,[p,q] ( f )=
τM < ∞, we also define τ∗

M,[p,q]( f )

τ∗
M,[p,q]( f ) = liminf

r→1−

log+p−1 M(r, f )

exp
(

τM
(
logq−1

1
1−r

)µM
) .

Remark 1.24. In the case p = 1, we replace log−1 by exp, see page 3.

Example 1.25. We give these two examples to illustrate the Definition 1.23.

1. Let f be analytic function in D defined by :

f (z) = exp

(
2exp

(
4
(

log
1

1− z

)5
))

.

It is clear that :

σM,[2,2]( f ) = 5, τM,[2,2]( f ) = 4 and τ∗
M,[2,2]( f ) = 2.

2. We can deal similarly with case p = 1, as shown in this example. Let f be analytic
function in D defined by :

f (z) = 3exp
(

2
1− z

)
.

It’s clear that :
σ( f ) = 1, τ( f ) =

2
π

and τ∗( f ) = 3.

By using this new concept, we will prove the following results.

Theorem 1.26. Let p ≥ 2 and 1 ≤ q ≤ p. Suppose that the analytic coefficients of the
equation (2) satisfy

0 < σ[p,q](A) = σ[p,q](B) = σ < ∞,

0 < τ[p,q](A) = τ[p,q](B) = τ < ∞

and
0 < τ∗

[p,q](A)< τ∗
[p,q](B) = τ∗ < ∞.
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Then every solution f ̸≡ 0 of the equation (2) satisfies σ[p,q]( f ) = +∞ and

σ[p,q] (B)≤ σ[p+1,q] ( f )≤ max
{

σM,[p,q] (A) ;σM,[p,q] (B)
}
.

Furthermore, if p > q then
σ[p+1,q] ( f ) = σ[p,q] (B) .

Example 1.27. In this example, we give a perspective to how Theorem 1.26 works. Let
A(z) = exp

(
exp
(
2(1− z)−1

))
and B(z) = exp

(1
2 exp

(
2(1− z)−1

))
be two analytic func-

tions in D. We see here that σ2(A) = σ2(B), τ2(A) = τ2(B) and τ∗
2 (A) < τ∗

2 (B). Then,
it is not easy to solve exactly the equation f ′′ +A(z) f ′ +B(z) f = 0, and we cannot de-
duce anything about the growth of solutions by using previous results. But, by Theorem
1.26, we say that, every solution f ̸≡ 0 of f ′′+A(z) f ′+B(z) f = 0 has σ2( f ) = +∞ and
σ3( f ) = σ2(B) = 1.

Theorem 1.28. Let p ≥ 2 and 1 ≤ q ≤ p. Suppose that the analytic coefficients of the
equation (2) satisfy

0 < µ[p,q](A) = µ[p,q](B) = µ < ∞,

0 < τ [p,q](A) = τ [p,q](B) = τ < ∞

and
0 < τ∗

[p,q](A)< τ∗
[p,q](B) = τ∗ < ∞.

Then every solution f ̸≡ 0 of the equation (2) satisfies

σ[p,q]( f ) = +∞, and σ[p+1,q]( f )≥ µ[p,q](B).

2 Some Lemmas

Lemma 2.1 ([8, 9, 20]). Let f be a meromorphic function in the unit disc D and let k ∈ N.
Then

m

(
r,

f (k)

f

)
= S(r, f ),

where S(r, f ) = O
(
log+ T (r, f )+ log

( 1
1−r

))
, possibly outside a set F ⊂ [0,1) with finite

logarithmic measure
∫

F
dr

1−r < ∞.

Remark 2.2. In this paper, we use several times the sets E which are not the same each
time, although they are denoted by the same letter.
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Lemma 2.3 ([10]). Let f be a meromorphic function in D with µ[p,q]( f ) = µ < ∞. Then
for any given ε > 0, there exists a subset E ⊂ [0,1) that has an infinite logarithmic measure∫

E
dr

1−r =+∞ such that for all r ∈ E we have

T (r, f )< expp

{
(µ + ε) logq

(
1

1− r

)}
.

Lemma 2.4. Let f be a meromorphic function in D with 0 < µ[p,q]( f ) = µ < ∞ and 0 <
τ [p,q]( f ) = τ < ∞. Then, for any given ε > 0, there exists a set E ⊂ [0,1) that has an infinite
logarithmic measure

∫
E

dt
1−t =+∞ such that

T (r, f )< expp−1

{
(τ + ε)

(
logq−1

1
1− r

)µ}
holds for all r ∈ E.

Proof. By the definition of lower [p,q]-order and lower [p,q]-type, there exists an increas-
ing sequence {rm}+∞

m=1 ⊂ [0,1) satisfying 1−d(1− rm)< rm+1, (0 < d < 1), (rm −→
m→+∞

1−)

and

lim
m→+∞

log+p−1 T (rm, f )(
logq−1

1
1−rm

)µ = τ.

For any r ∈
[
1− 1−rm

d ,rm
]
, we have

log+p−1 T (r, f )(
logq−1

1
1−r

)µ ≤
log+p−1 T (rm, f )(

logq−1
1

1−rm

)µ

(
logq−1

1
1−rm

)µ

(
logq−1

1
1−r

)µ −→
m→+∞

τ ,

because
(
logq−1

1
1−r

)µ ∼
m→∞

(
logq−1

1
1−rm

)µ
. Then, for any given ε > 0, there exists a pos-

itive integer m0 such that for all m ≥ m0 and for all r ∈
[
1− 1−rm

d ,rm
]
, we have

log+p−1 T (r, f )< (τ + ε)
(

logq−1
1

1− r

)µ
.

Set

E =
+∞∪

m=m0

[
1− 1− rm

d
,rm

]
.

Then, for all r ∈ E, we obtain for any given ε > 0,

T (r, f )< expp−1

{
(τ + ε)

(
logq−1

1
1− r

)µ}
,
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where ∫
E

dt
1− t

=
+∞

∑
m=m0

∫ rm

1− 1−rm
d

dt
1− t

=
+∞

∑
m=m0

log
1
d
=+∞.

Lemma 2.5. Let p ≥ 2 and 1 ≤ q ≤ p and f be a meromorphic function in D such that
0 < σ[p,q]( f ) = σ < ∞, 0 < τ[p,q]( f ) = τ < ∞ and 0 < τ∗

[p,q]( f ) = τ∗ < ∞. Then for any
given β < τ∗, there exists a subset E ⊂ [0,1) that has an infinite logarithmic measure∫

E
dr

1−r =+∞ such that for all r ∈ E we have

logp−2 T (r, f )> β exp
(

τ
(

logq−1
1

1− r

)σ)
.

Proof. By the definitions, there exists an increasing sequence {rm}+∞
m=1 ⊂ [0,1) satisfying

1
m +

(
1− 1

m

)
rm < rm+1, (rm −→

m→+∞
1−) and

lim
m→+∞

logp−2 T (rm, f )

exp
(

τ
(

logq−1
1

1−rm

)σ) = τ∗.

Then, there exists a positive integer m1 such that for all m≥m1 and for any given 0< ε < τ∗,
we have

logp−2 T (rm, f )> (τ∗− ε)exp
(

τ
(

logq−1
1

1− rm

)σ)
. (3)

For r ∈
[
rm,

1
m +

(
1− 1

m

)
rm
]
, we have

lim
m→+∞

exp
(

τ
(
logq−1

(
1− 1

m

)( 1
1−r

))σ
)

exp
(

τ
(
logq−1

1
1−r

)σ
) = 1.

Then for any given 0< β < τ∗−ε , there exists a positive integer m2 such that for all m≥m2,
and for all r ∈

[
rm,

1
m +

(
1− 1

m

)
rm
]
, we have

exp
(

τ
(
logq−1

(
1− 1

m

)( 1
1−r

))σ
)

exp
(

τ
(
logq−1

1
1−r

)σ
) >

β
τ∗− ε

. (4)

By (3) and (4), for all m ≥ m3 = max{m1;m2} and for all

r ∈
[

rm,
1
m
+

(
1− 1

m

)
rm

]
,



12 M. A. Zemirni, B. Belaı̈di

we have

logp−2 T (r, f ) ≥ log+p−2 T (rm, f )

> (τ∗− ε)exp
(

τ
(

logq−1
1

1− rm

)σ)
≥ (τ∗− ε)exp

(
τ
(

logq−1

(
1− 1

m

)(
1

1− r

))σ)
> β exp

(
τ
(

logq−1
1

1− r

)σ)
.

Set

E =
+∞∪

m=m3

[
rm,

1
m
+

(
1− 1

m

)
rm

]
.

Then ∫
E

dt
1− t

=
+∞

∑
m=m3

∫ 1
m+(1− 1

m)rm

rm

dt
1− t

=
+∞

∑
m=m3

log
m

m−1
=+∞.

Similarly, as in Lemma 2.4, we can get the following lemma.

Lemma 2.6. Let p ≥ 2 and 1 ≤ q ≤ p and f be a meromorphic function in D with 0 <
µ[p,q]( f ) = µ < ∞, 0 < τ [p,q]( f ) = τ < ∞ and 0 < τ∗

[p,q]( f ) = τ∗ < ∞. Then, for any given

ε > 0, there exists a set E ⊂ [0,1) that has an infinite logarithmic measure
∫

E
dt

1−t = +∞
such that

T (r, f )< expp−2

{
(τ∗+ ε)exp

(
τ
[

logq−1
1

1− r

]µ)}
holds for all r ∈ E.

Lemma 2.7 ([1]). Let p ≥ q ≥ 1 be integers. If A0 (z) , · · · ,Ak−1 (z) are analytic functions
of [p,q]−order in the unit disc ∆, then every solution f ̸≡ 0 of (1) satisfies

ρ[p+1,q] ( f ) = ρM,[p+1,q] ( f )≤ max
{

ρM,[p,q] (A j) : j = 0,1, · · · ,k−1
}
.

3 Proof of Theorem 1.15

Let µ[p,q](B) = µ and let f ̸≡ 0 be a solution of the equation (2). We have

−B(z) =
f ′′

f
+A(z)

f ′

f
. (5)
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Then,

m(r,B)≤ m(r,A)+m
(

r,
f ′′

f

)
+m

(
r,

f ′

f

)
+O(1). (6)

By Lemma 2.1 and as A(z) and B(z) are all analytic, then from (6) the following holds

T (r,B)≤ T (r,A)+O
(

log+ T (r, f )+ log
(

1
1− r

))
(7)

for all r ̸∈ F , where
∫

F
dt

1−t < ∞. Now, from hypotheses of Theorem 1.15 we set µ[p,q](A) =
β < µ . Then, by Lemma 2.3, for any given ε with 0 < 2ε < µ −β and for all r ∈ E with∫

E
dt

1−t = ∞, we get

T (r,A)< expp

{
(β + ε) logq

(
1

1− r

)}
(8)

and we have for r → 1−

T (r,B)> expp

{
(µ − ε) logq

(
1

1− r

)}
. (9)

By substituting (8) and (9) into (7), we obtain for r ∈ E −F,r → 1−

expp

{
(µ − ε) logq

(
1

1− r

)}
< expp

{
(β + ε) logq

(
1

1− r

)}
+O

(
log+ T (r, f )+ log

(
1

1− r

))
. (10)

By noting that µ − ε > β + ε , it follows from (10) that

(1−o(1))expp

{
(µ − ε) logq

(
1

1− r

)}
< O

(
log+ T (r, f )+ log

(
1

1− r

))
. (11)

Hence, by (11) and since ε > 0 is arbitrary, we get

σ[p,q]( f ) = +∞

and
σ[p+1,q]( f )≥ µ[p+1,q]( f )≥ µ = µ[p,q](B) .

4 Proof of Theorem 1.21

By Lemma 2.1 and Lemma 2.4, and as same reasoning as in the proof of Theorem 1.15, we
get the result.
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5 Proof of Theorem 1.26

Let σ[p,q](B) = σ and let f ̸≡ 0 be a solution of the equation (2). Then f satisfies

−B(z) =
f ′′

f
+A(z)

f ′

f
(12)

By (12) and Lemma 2.1, we obtain

T (r,B) = m(r,B) ≤ m(r,A)+m
(

r,
f ′′

f

)
+m

(
r,

f ′

f

)
+O(1)

= T (r,A)+O
(

log+ T (r, f )+ log
(

1
1− r

))
(13)

for all r ∈ F , where F ⊂ [0,1) has finite logarithmic measure. From the hypotheses of
Theorem 1.26, there exist real constants β and β1 such that τ∗

[p,q](A)< β1 < β < τ∗
[p,q](B) =

τ∗. Then for r → 1−, we have

T (r,A)≤ expp−2

(
β1 exp

(
τ
(

logq−1
1

1− r

)σ))
. (14)

By Lemma 2.5, there exists a subset E ⊂ [0,1) that has an infinite logarithmic measure such
that for all r ∈ E, we have

T (r,B)> expp−2

(
β exp

(
τ
(

logq−1
1

1− r

)σ))
. (15)

From (13)-(15) we obtain for r ∈ E −F that

expp−2

(
β exp

(
τ
(

logq−1
1

1− r

)σ))
< expp−2

(
β1 exp

(
τ
(

logq−1
1

1− r

)σ))

+O
(

log+ T (r, f )+ log
(

1
1− r

))
. (16)

By (16), we obtain
σ[p,q]( f ) = +∞

and
σ[p+1,q]( f )≥ σ = σ[p,q](B).

On the other hand, by Lemma 2.7, we have

ρ[p+1,q] ( f )≤ max
{

ρM,[p,q] (A) ,ρM,[p,q] (B)
}
.
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It yields
σ[p,q](B)≤ ρ[p+1,q] ( f )≤ max

{
ρM,[p,q] (A) ,ρM,[p,q] (B)

}
.

If p > q, then we have

max
{

ρM,[p,q] (A) ,ρM,[p,q] (B)
}
= σ[p,q](B).

Therefore, we deduce that
ρ[p+1,q] ( f ) = σ[p,q](B).

6 Proof of Theorem 1.28

By Lemma 2.1 and Lemma 2.6, and as same reasoning as in proof of Theorem 1.26, we get
the result.

7 Conclusion

Throughout this article, we have shown firstly that the similarity between the cases of usual
orders and lower orders is also satisfied in the unit disc D, and we have generalized the
previous results to general [p,q]-growth. Defining new type of growth in the unit disc D is
discussed and is applied to complex differential equations to solve some problems related
to growth of solutions.
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