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Abstract: Let G be an undirected connected graph with n, n ≥ 3, vertices and m edges. If
µ1 ≥ µ2 ≥ ·· · ≥ µn−1 > µn = 0 and ρ1 ≥ ρ2 ≥ ·· · ≥ ρn−1 > ρn = 0 are the Laplacian and
the normalized Laplacian eigenvalues of G, then the Kirchhoff and the degree Kirchhoff in-
dices obey the relations K f (G) = n∑n−1

i=1 µ−1
i and DK f (G) = 2m∑n−1

i=1 ρ−1
i , respectively. The

inequalities that determine lower bounds for some invariants of G, that contain K f (G) and
DK f (G) , are obtained in this paper. Lower bounds for K f (G) and DK f (G), known in the
literature, are obtained as a special case.
Keywords: Kirchhoff index, Degree Kirchhoff index, Laplacian spectrum (of graph), normal-
ized Laplacian spectrum (of graph).

1 Introduction

Let G be undirected connected graph with n, n≥ 3, vertices and m edges, with vertex degree
sequence ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0. Denote by A the adjacency matrix of the graph
G and by D the diagonal matrix of its vertex degrees. Then L = D−A is Laplacian matrix
of G. Denote by µ1 ≥ µ2 ≥ ·· · ≥ µn−1 > µn = 0 eigenvalues of L (see [8, 18]). Because
the graph G is assumed to be connected it has no isolated vertices and therefore the matrix
D−1/2 is well defined. The L∗ = D−1/2LD−1/2 is normalized Laplacian matrix of the graph
G. Its eigenvalues are ρ1 ≥ ρ2 ≥ ·· · ≥ ρn−1 > ρn = 0. For details of spectral theory of the
normalized Laplacian matrix see, for example, [6].

For Laplacian and normalized Laplacian eigenvalues the following equalities are valid

n−1

∑
i=1

µi =
n

∑
i=1

di = 2m,
n−1

∑
i=1

µ2
i =

n

∑
i=1

d2
i +

n

∑
i=1

di = M1 +2m (1)
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and
n−1

∑
i=1

ρi = n,
n−1

∑
i=1

ρ2
i = n+2R−1, (2)

where M1 is the first Zagreb index (see [14]), and R−1 is Randić index (see [4, 24]).
Graph invariant named Kirchhoff index, is defined as [13]

K f (G) = n
n−1

∑
i=1

1
µi

and the degree Kirchhoff index as [5]

DK f (G) = 2m
n−1

∑
i=1

1
ρi

The graph invariants K f and DK f are currently much studied in the mathematical and
mathematico chemical literature; see the recent papers [1, 9, 10, 11, 12, 15, 16, 20, 21] and
the references cited therein. In a few cases these invariants can be determined in a closed
form. Therefore, the inequalities that give upper or lower bounds of these invariants are
notable. The bounds can be determined in terms of usual structural parameters, such as
number of vertices, number of edges, vertex degrees, and similar, or extremal Laplacian
and normalized Laplacian eigenvalues, or Zagreb or Randić index, etc. (see [2, 3, 9, 10, 15,
16, 17, 20, 22, 23]. In this paper we consider lower bounds for some graph invariants that,
in a special case, reduce to K f (G) and DK f (G).

2 Main result

We first give two inequalities for non-negative real numbers.

Theorem 1 Let a1,a2, . . . ,an be non-negative real numbers with the property a1+a2+ · · ·+
an =A> 0. In addition, let l,r > 0 and p≥ 1 be numbers with the property r( j− p+1)+ l ≥
1 or r( j− p+1)+ l < 0, for each j, j ≥ p−1. Then the following is valid

n

∑
i=1

al
i

(Ar −ar
i )

p ≥ npr−l+1Al−pr

(nr −1)p . (3)

Equality holds if and only if a1 = a2 = · · ·= an.

Proof Suppose that numbers l,r and p satisfy the conditions of Theorem 1. Then, for each
ai, 0 ≤ ai ≤ A, i = 1,2, . . . ,n the following inequality is valid

al
i

(Ar −ar
i )

p =
1

(p−1)!

+∞

∑
j=p−1

( j)p−1

Ar( j+1) ar( j−p+1)+l
i ,
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where ( j)p−1 = j( j − 1) · · ·( j − p + 2), ( j)0 = j. Summing the above inequality on i,
i = 1,2, . . . ,n, we obtain

n

∑
i=1

al
i

(Ar −ar
i )

p =
n

∑
i=1

1
(p−1)!

+∞

∑
j=p−1

( j)p−1

Ar( j+1) ar( j−p+1)+l
i =

=
1

(p−1)!

+∞

∑
j=p−1

( j)p−1

Ar( j+1)

n

∑
i=1

ar( j−p+1)+l
i .

When apply discrete Jensen inequality (see [19]) to the above inequality we obtain

n

∑
i=1

al
i

(Ar −ar
i )

p ≥ n
(p−1)!

+∞

∑
j=p−1

( j)p−1

Ar( j+1)

(
∑n

i=1 ai

n

)r( j−p+1)+l

=

=
n
(A

n

)l

(Ar −Arn−r)p =
npr−l+1Al−pr

(nr −1)p

�

The following theorem can be similarly proved.

Theorem 2 Suppose that real numbers a1,a2, . . . ,an and numbers l,r and p satisfy the
conditions of Theorem 1. Then

n

∑
i=1

al
i

(Ar −ar)p ≥
al

1
(Ar −ar

1)
p +

(n−1)pr−l+1(A−a1)
l−pr

((n−1)r −1)p . (4)

Equality holds if and only if a2 = a3 = · · ·= an.

We now obtain an lower bounds for some graph invariants.

Theorem 3 Let G be an undirected connected graph with n, n ≥ 3, vertices and m edges.
If for numbers l and p, p ≥ 1, hold j− p+ l ≥ 0 for each j, j ≥ p−1, then

n−1

∑
i=1

(2m− (n−2)µi)
l

µ p
i

≥ (n−1)p−l+1(2m)l−p (5)

Equality holds if and only if G ∼= Kn.

Proof. For n := n−1, r = 1, ai = A−µi, i = 1,2, . . . ,n−1, inequality (3) becomes

n−1

∑
i=1

(A−µi)
l

µ p
i

≥ (n−1)p−l+1Al−p

(n−2)p (6)
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Based on the equality ai = A − µi, i = 1,2, . . . ,n − 1 and (1), we obtain that A = 2m
n−2 .

By substituting A = 2m
n−2 in (6) we arrive at (5). Having in mind that equality in (3), for

n := n− 1, occurs if and only if a1 = a2 = · · · = an−1, equality in (5) holds if and only if
G ∼= Kn.

�

Corollary 1 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each p, p ≥ 1 the following is valid

n−1

∑
i=1

1
µ p

i
≥ (n−1)p+1

(2m)p .

Equality holds if and only if G ∼= Kn.

Corollary 2 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then

K f (G)≥ n(n−1)2

2m
≥ (n−1)2

∆
Equality holds if and only if G ∼= Kn.

Theorem 4 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each p, p ≥ 1

n−1

∑
i=1

1(
1− µi

2m

)p ≥ (n−1)p+1

(n−2)p .

Equality holds if and only if G ∼= Kn.

Corollary 3 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each p, p ≥ 1

n−1

∑
i=1

1
µ p

i
≥ 1

np +
(n−2)p+1

(2m−∆−1)p .

Equality holds if and only if G ∼= Kn.

Corollary 4 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then

K f (G)≥ 1+
n(n−2)2

2m−∆−1
.

Equality holds if and only if G ∼= Kn.
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Corollary 5 [22] Let G be undirected connected graph with n, n≥ 3, vertices and m edges.
Then

n−1

∑
i=1

n
µ p

i
≥ n

(1+∆)p +
n(n−2)p+1

(2m−∆−1)p .

Equality holds if and only if G ∼= Kn.

Corollary 6 [23] Let G be undirected connected graph with n, n≥ 3, vertices and m edges.
Then

K f (G)≥ n
1+∆

+
n(n−2)2

2m−∆−1
.

Equality holds if and only if G ∼= Kn.

Corollary 7 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then

K f (G)≥ n2(n−1)−2m
2m

≥ n−1.

Equality holds if and only if G ∼= Kn.

We now obtain inequalities that in a special case assign lower bound for graph invariant
DK f (G).

Theorem 5 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each l and p, p ≥ 1, that obey inequality j− p+ l ≥ 0, for each j, j ≥ p−1, the
following is valid

n−1

∑
i=1

(n− (n−2)ρi)
l

ρ p
i

≥ (n−1)l−p+1nl−p. (7)

Equality holds if and only if G ∼= Kn.

Proof. For n := n−1, r = 1, ai = A−ρi, i = 1,2, . . . ,n−1, inequality (3) transforms into

n−1

∑
i=1

(A−ρi)
l

ρ p
i

≥ (n−1)p−l+1Al−p

(n−2)p .

According to the equality ai = A−ρi and (2) we have that A = n
n−2 . Substituting A = n

n−2
in the above inequality we arrive at (7).

For n := n−1, equality in (3) holds if and only if a1 = a2 = · · ·= an−1, so the equality
in (7) holds if and only if ρ1 = ρ2 = · · ·= ρn−1, i.e. when G ∼= Kn.

�
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Corollary 8 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each p, p ≥ 1

n

∑
i=1

2m
ρ p

i
≥ 2m(n−1)p+1

np .

Equality holds if and only if G ∼= Kn.

Corollary 9 [21] Let G be undirected connected graph with n, n≥ 3, vertices and m edges.
Then

DK f (G)≥ 2m(n−1)2

n
.

Equality holds if and only if G ∼= Kn.

Theorem 6 Let G be undirected connected graph with n, n ≥ 3, vertices and m edges.
Then, for each p, p ≥ 1

n−1

∑
i=1

2m
(n−ρi)p ≥ 2m(n−1)p+1

np(n−2)p

Equality holds if and only if G ∼= Kn.
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[24] G. YU, L. FENG, Randić index and eigenvalues of graphs, Rocky Mountain J. Math., 40
(2010), 713-721.


