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Approximations for Soft Fuzzy Rough Sets

I. Beg, T. Rashid

Abstract: In this paper, we introduce a modified soft fuzzy rough set model. The lower and
upper approximation operators are presented and their related properties are investigated. It is
shown that these new models of approximations are finer than already known in the literature
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1 Introduction

Several notions have been presented in the literature to cope with the uncertainty, vagueness
and ambiguity, like fuzzy set theory [23], rough set theory [19] and soft set theory [18].
Each of these ideas have its inherent difficulties as pointed out in [18]. Fuzzy set theory has
been used to handle imprecision in decision making problems to take care of the ambiguity
in an information [2, 3]. Systematic treatment of deductive aspects and structures of fuzzy
logic are presented in [8]. Applications of rough sets in various fields can also be seen in
[7, 10, 11]. Molodtsov [18] introduced the concept of soft set theory as a new mathematical
tool to deal with uncertainty. Now a days development on soft set theory is progressing
rapidly. Maji et al. [16] defined several operations on soft sets and gave detailed study
on the theory of soft sets. Afterward Ali et al. [1] proved that De Morgan’s laws hold in
soft set theory. Lattice structure is developed for soft set theory by Qin and Hong [20] and
they defined the notion of soft quotient algebras of soft sets. Maji et al. [15] proposed a
decision making method based on soft set and rough sets. Chen et al. [4] presented soft
set parameterization reduction, and compared this notion to the related concept of attributes
reduction in rough set theory. Kong et al. [13] defined the notion of normal parameter
reduction of soft sets and developed a reduction algorithm based on the importance degree
of parameters. Maji et al. [14] introduced the notion of fuzzy soft sets by combining fuzzy
sets and soft sets because in many cases parameters in soft sets are vague. Roy and Maji
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[21] developed a fuzzy soft set theoretic approach towards a decision making problem.
Xiao et al. [22] proposed a combined forecasting approach based on fuzzy soft set theory.
This theory is now widely applied in many real world problems and in the development of
new mathematical structures [6, 9, 12]. Recently Meng et al. [17] proposed the concept
of soft fuzzy rough set and developed some important operators for the approximations
of soft fuzzy rough sets. In these approximation operators there are some shortcomings
(undefinable set will not always have upper or lower approximation). The purpose of this
paper is to overcome these shortcomings by improving the basic structure of soft fuzzy
rough set. Rest of this paper is arranged in the following manner. In Section 2, some basic
notions are given to understand our proposal. In Section 3, modified soft fuzzy rough sets
and its approximation operators are developed. In Section 4, conclusion of the paper is
given.

2 Preliminaries

First we review some basic concepts, necessary to understand our proposal.
Let U be a crisp universe of generic elements, a fuzzy set A in the universe U is a mapping
from U to [0,1]. For any u ∈U, the value A (u) is called the degree of membership of u in
A . If membership value of the elements is 0 or 1 then that fuzzy set is also called as crisp
set. So the membership value of all the elements in universal set U is 1 and the membership
value of all the elements in empty set is 0. Universal set U in the form of fuzzy set is
U (u) = 1 for all u ∈ U. Similarly, empty set /0 in the form of fuzzy set is /0(u) = 0 for all
u ∈U. The family of all subsets of U is denoted by P(U) and family of all fuzzy sets in U
is denoted by FS(U). With the min-max system proposed by Zadeh, fuzzy set intersection,
union and complement are defined component wise as follow:

(A ∩B)(u) = A (u)∧B(u),
(A ∪B)(u) = A (u)∨B(u),
A c(u) = 1−A (u),
where A ,B are fuzzy sets and u ∈U. By A ⊆ B, we mean that A (u)≤ B(u) for all

u ∈U. Clearly, A = B if A (u) = B(u) for all u ∈U.

Definition 1 [24] α-level set of A is defined as (A )α = {u ∈U ;A (u)> α}.

In 1999, Molodtsov [18] introduced the concept of soft sets. Let U be the universe set
and E the set of all possible parameters under consideration with respect to U. Usually, pa-
rameters are attributes, characteristics, or properties of objects in U. Molodtsov [18] defined
the notion of a soft set in the following way:

Definition 2 [18] A pair (F,A) is called a soft set over U, where A ⊆ E and F is a mapping
given by F : A → P(U). In other words, a soft set over U is a parameterized family of
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subsets of U. For e ∈ A, F(e) may be considered as the set of e-approximate elements of the
soft set (F,A).For u ∈U, F(e)u = 1 if u ∈ F(e) and F(e)u = 0 if u /∈ F(e).

Definition 3 [5] Let S = (F,A) be a soft set over U. Then the pair SAS = (U,S) is called a
soft approximation space. Based on SAS, following two operations are defined:

sraSAS(X) = {u ∈U : ∃a ∈ A[u ∈ F(a)⊆ X ]}
sraSAS(X) = {u ∈U : ∃a ∈ A[u ∈ F(a),F(a)∩X ̸= /0]}
for any subset X of U. Two subsets sraSAS(X) and sraSAS(X) called the lower and upper

soft rough approximations of X in SAS, respectively are obtained. If sraSAS(X)= sraSAS(X),
X is said to be soft definable; otherwise X is called a soft rough set.

Definition 4 [5] Let S = (F,A) be a soft set over U. If
∪

a∈A
F(a) =U, then S is called a full

soft set.

Definition 5 [16] Let U be the universe set and E the set of all possible parameters under
consideration with respect to U. A pair (F̃ ,A) is called a fuzzy soft set over U, where A ⊆ E
and F̃ is a mapping given by F̃ : A → FS(U). For e ∈ A and u ∈U, F̃(e)u is the membership
value of u in F̃(e).

In the definition of a fuzzy soft set, fuzzy sets in the universe U are used as substitutes
for the crisp subsets of U. Hence, every soft set may be considered as a fuzzy soft set.

Definition 6 [17] Let S̃ = (F̃ ,A) be a fuzzy soft set over U, where F̃ is a map F̃ : A →
FS(U). Then the pair SFAS = (U, S̃) is called soft fuzzy approximation space. For any
fuzzy set A ∈ FS(U), the lower and upper soft fuzzy rough approximations of A with
respect to SFAS are denoted by SFRASFAS(A ) and SFRASFAS(A ), respectively, which are
fuzzy sets in U given by:

SFRASFAS(A )(x) =
∧

a∈A

(
(1− F̃(a)(x))∨

( ∧
y∈U

((1− F̃(a)(y))∨A (y))

))

SFRASFAS(A )(x) =
∨

a∈A

(
F̃(a)(x)

( ∨
y∈U

(F̃(a)(y)∧A (y))

))
for all x ∈ U. The operators SFRASFAS and SFRASFAS are called the lower and upper

soft fuzzy rough approximation operators on fuzzy sets. If SFRASFAS(A ) = SFRASFAS(A ),
A is said to be soft fuzzy definable; otherwise A is called a soft fuzzy rough set.

3 Modified soft fuzzy rough set

Meng et al. [17] showed that the approximations of soft fuzzy rough set are extensions of
Feng’s approximations of soft rough set. In continuation of these results here we propose
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the modified soft fuzzy rough set. This extension provided a better and finer approximations
of soft fuzzy rough sets than Meng’s approximations of these sets.

Definition 7 Let (F̃ ,A) be a fuzzy soft set over U, where F̃ is a map F̃ : A → FS(U). Let
φ : U → FS(A) be another map defined as φ(x) = {F̃(a)x : x ∈ (F̃(a))0} where F̃(a)x is the
membership value of a in φ(x). Then the pair MSFAS = (U,φ) is called modified soft fuzzy
approximation space. For any fuzzy set A ∈ FS(U), the lower and upper modified soft
fuzzy rough approximations of A with respect to MSFAS are denoted by MSFRAMSFAS(A )
and MSFRAMSFAS(A ), respectively, which are fuzzy sets in U given by:

MSFRAMSFAS(A )(x)

=


∨( ∧

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
if φ(x) ̸= /0 and φ(x) ̸= φ(y) for all y ∈ ((A )0)

c

A (x) if φ(x) = /0 and φ(x) ̸= φ(y) for all y ∈ ((A )0)
c

0 if φ(x) = φ(y) for some y ∈ ((A )0)
c

for all x ∈ (µA )0 and

MSFRAMSFAS(A )(x)

=


∧( ∨

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
if φ(x) ̸= /0 and φ(x) = φ(y) for some y ∈ (A )0

A (x) if φ(x) = /0 and φ(x) = φ(y) for some y ∈ (A )0
0 if φ(x) ̸= φ(y) for all y ∈ (A )0

for all x ∈U.
The operators MSFRAMSFAS and MSFRAMSFAS are called the lower and upper modified

soft fuzzy rough approximation operators on fuzzy sets. If MSFRAMSFAS(A ) ̸=MSFRAMSFAS(A ),
A is said to be a modified soft fuzzy rough set.

Remark 1 For any fuzzy set A , it is easy to see that /0 ⊆ MSFRAMSFAS(A ) ⊆ U and
/0 ⊆ MSFRAMSFAS(A )⊆U.

Theorem 1 Let (F̃ ,A) be a fuzzy soft set over U, MSFAS = (U,φ) be a modified soft ap-
proximation space and A ∈ FS(U). Then we have

1. MSFRAMSFAS(A )⊆ A ⊆ MSFRAMSFAS(A ),

2. MSFRAMSFAS(U )⊆ U = MSFRAMSFAS(U ),

3. MSFRAMSFAS( /0) = /0 = MSFRAMSFAS( /0).

Proof We use the standard pointwise argument.
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1. There are three cases for MSFRAMSFAS(A )(x).

Case i. If MSFRAMSFAS(A )(x) = A (x) then we can write that

MSFRAMSFAS(A )(x)≤ A (x).

Case ii. If MSFRAMSFAS(A )(x) = 0 then MSFRAMSFAS(A )(x) ≤ A (x) because we
know that 0 ≤ A (x)≤ 1.
Thus, MSFRAMSFAS(A )(x)≤ A (x).

Case iii. If MSFRAMSFAS(A )(x) =
∨( ∧

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
then it can be easily

noted that (A (x)
∧

F̃(ei)x)≤ A (x) for all ei ∈ (φ(x))0.

This further implies that
∨( ∧

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
≤ A (x).

Thus, MSFRAMSFAS(A )(x)≤ A (x).

Now we want to prove that A (x)≤ MSFRAMSFAS(A )(x).

There are three cases for MSFRAMSFAS(A )(x).

Case i. If MSFRAMSFAS(A )(x) =
∧( ∨

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
then it can be noted

that A (x)≤ (A (x)
∨

F̃(ei)x) for all ei ∈ (φ(x))0.

This further implies that A (x)≤
∧( ∨

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
Thus A (x)≤ MSFRAMSFAS(A )(x).

Case ii. If MSFRAMSFAS(A )(x) = A (x) then A (x)≤ MSFRAMSFAS(A )(x).

Case iii. MSFRAMSFAS(A )(x) = 0 when φ(x) ̸= φ(y) for all y ∈ (µA )0, which further
implies that x /∈ (µA )0. So A (x) = 0.
Thus A (x)≤ MSFRAMSFAS(A )(x).

Hence
MSFRAMSFAS(A )⊆ A ⊆ MSFRAMSFAS(A ).

2. By (1), we can write that U ⊆ MSFRAMSFAS(U ).

By definition of MSFRAMSFAS(A ), we can write MSFRAMSFAS(A ) ⊆ U for any
fuzzy set A . So MSFRAMSFAS(U )⊆ U .
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Thus, U = MSFRAMSFAS(U ).

Since U (x) = 1 for all x ∈U. So φ(x) ̸= φ(y) for all y ∈ ((U )0)
c then there are two

possible cases.

Case i. If φ(x) = /0 then MSFRAMSFAS(U )(x) = U (x).

Case ii. If φ(x) ̸= /0 then MSFRAMSFAS(U )(x) =
∨( ∧

ei∈(φ(x))0

(U (x), F̃(ei)x)

)
.

It can be noted that (U (x)
∧

F̃(ei)x) ≤ U (x) for all ei ∈ (φ(x))0, which further

implies that
∨( ∧

ei∈(φ(x))0

(U (x), F̃(ei)x)

)
≤ U (x).

Thus MSFRAMSFAS(U )(x)≤ U (x).

Hence
MSFRAMSFAS(U )⊆ U = MSFRAMSFAS(U ).

3. By (1), we can write that MSFRAMSFAS( /0)⊆ /0.

Since /0 ⊆ MSFRAMSFAS(A ) for any fuzzy set A . So /0 ⊆ MSFRAMSFAS( /0).

Thus, MSFRAMSFAS( /0) = /0.

It is obvious that ( /0)0 = /0.

So there is no y in ( /0)0.

This implies that φ(x) ̸= φ(y) for all y ∈ (µ /0)0 . Thus, MSFRAMSFAS( /0)(x) = 0 for
all x ∈U.

Hence
MSFRAMSFAS( /0) = /0 = MSFRAMSFAS( /0).

�

Theorem 2 Let (F̃ ,A) be a fuzzy soft set over U, MSFAS = (U,φ) be a modified soft fuzzy
approximation space and A , B ∈ FS(U). Then we have

1. A ⊆ B ⇒ MSFRAMSFAS(A )⊆ MSFRAMSFAS(B),

2. A ⊆ B ⇒ MSFRAMSFAS(A )⊆ MSFRAMSFAS(B).

Proof
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1. Let A ⊆ B which implies that A (x)≤ B(x) for all x ∈U.

If MSFRAMSFAS(A )(x)= 0 then it is easy to see that MSFRAMSFAS(A )(x)≤MSFRAMSFAS(B)(x)
for all x ∈U.

If φ(x) = /0 and φ(x) ̸= φ(y) for all y ∈ ((µA )0)
c then MSFRAMSFAS(A )(x) = A (x)

where x ∈ (µA )0. Since A ⊆ B so x ∈ (µB)0 then MSFRAMSFAS(B)(x) = B(x).

Thus, MSFRAMSFAS(A )(x)≤ MSFRAMSFAS(B)(x).

If φ(x) ̸= /0 and φ(x) ̸= φ(y) for all y ∈ ((µA )0)
c where x ∈ (µA )0 then x ∈ (µB)0 as

A ⊆ B.

This implies that (A (x)
∧

F̃(ei)x)≤ (B(x)
∧

F̃(ei)x) for all ei ∈ (φ(x))0, which fur-

ther implies that
∨( ∧

ei∈(φ(x))0

(A (x), F̃(ei)x)

)
≤
∨( ∧

ei∈(φ(x))0

(B(x), F̃(ei)x)

)
.

Thus, MSFRAMSFAS(A )(x)≤ MSFRAMSFAS(B)(x).

Hence
MSFRAMSFAS(A )⊆ MSFRAMSFAS(B).

2. Let A ⊆ B which implies that A (x)≤ B(x) for all x ∈U.

We want to show that MSFRAMSFAS(A )(x)≤ MSFRAMSFAS(B)(x) for all x ∈U.

If MSFRAMSFAS(B)(x) = 1 then MSFRAMSFAS(A )(x)≤ MSFRAMSFAS(B)(x).

Case i. If φ(x) ̸= φ(y) for all y ∈ (µA)0 then MSFRAMSFAS(A )(x) = 0, which fur-
ther implies that MSFRAMSFAS(A )(x)≤ MSFRAMSFAS(B)(x).

Case ii. If φ(x) = /0 and φ(x) = φ(y) for some y ∈ (µA)0 then the same y ∈ (µB)0
because of A ⊆ B. This further implies that MSFRAMSFAS(A )(x) = A (x)
and MSFRAMSFAS(B)(x) = B(x).

Thus , MSFRAMSFAS(A )(x) = MSFRAMSFAS(B)(x).

Case iii. If φ(x) ̸= /0 and φ(x) = φ(y) for some y ∈ (µA)0 then the same y ∈ (µB)0
because of A ⊆ B.

This implies that (A (x)
∨

F̃(ei)x) ≤ (B(x)
∨

F̃(ei)x) for all ei ∈ (φ(x))0, which
further implies that

∧ ∨
ei∈(φ(x))0

(A (x), F̃(ei)x)

≤
∧ ∨

ei∈(φ(x))0

(B(x), F̃(ei)x)

 .

Thus, MSFRAMSFAS(A )(x) = MSFRAMSFAS(B)(x).
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Hence
MSFRAMSFAS(A )⊆ MSFRAMSFAS(B).

�

Theorem 3 Let (F̃ ,A) be a fuzzy soft set over U, MSFAS = (U,φ) be a modified soft fuzzy
approximation space and A ,B ∈ FS(U). Then we have

1. MSFRAMSFAS(A ∪B)⊇ MSFRAMSFAS(A )∪MSFRAMSFAS(B),

2. MSFRAMSFAS(A ∩B)⊆ MSFRAMSFAS(A )∩MSFRAMSFAS(B),

3. MSFRAMSFAS(A ∪B)⊇ MSFRAMSFAS(A )∪MSFRAMSFAS(B),

4. MSFRAMSFAS(A ∩B)⊆ MSFRAMSFAS(A )∩MSFRAMSFAS(B).

Proof We use the standard pointwise argument.

1. Clearly A ∪B ⊇ A and A ∪B ⊇ B. By using Theorem 2(2) we can say that
MSFRAMSFAS(A ∪B)⊇MSFRAMSFAS(A ) and MSFRAMSFAS(A ∪B)⊇MSFRAMSFAS(B).

Hence

MSFRAMSFAS(A ∪B)⊇ MSFRAMSFAS(A )∪MSFRAMSFAS(B).

2. Clearly A ∩B ⊆ A and A ∩B ⊆ B. By using Theorem 2(1) we can say that
MSFRAMSFAS(A ∩B)⊆MSFRAMSFAS(A ) and MSFRAMSFAS(A ∩B)⊆MSFRAMSFAS(B).

Hence

MSFRAMSFAS(A ∩B)⊆ MSFRAMSFAS(A )∩MSFRAMSFAS(B).

3. Clearly A ∪B ⊇ A and A ∪B ⊇ B. By using Theorem 2(1) we can say that
MSFRAMSFAS(A ∪B)⊇MSFRAMSFAS(A ) and MSFRAMSFAS(A ∪B)⊇MSFRAMSFAS(B).

Hence

MSFRAMSFAS(A ∪B)⊇ MSFRAMSFAS(A )∪MSFRAMSFAS(B).

4. Clearly A ∩B ⊆ A and A ∩B ⊆ B. By using Theorem 2(2) we can say that
MSFRAMSFAS(A ∩B)⊆MSFRAMSFAS(A ) and MSFRAMSFAS(A ∩B)⊆MSFRAMSFAS(B).

Hence

MSFRAMSFAS(A ∩B)⊆ MSFRAMSFAS(A )∩MSFRAMSFAS(B).
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�

Theorem 4 Let (F̃ ,A) be a fuzzy soft set over U, MSFAS = (U,φ) be a modified soft fuzzy
approximation space and A ∈ FS(U). Then we have

1. MSFRAMSFAS(MSFRAMSFAS(A ))⊇ MSFRAMSFAS(A ),

2. MSFRAMSFAS(MSFRAMSFAS(A ))⊇ MSFRAMSFAS(A ),

3. MSFRAMSFAS(MSFRAMSFAS(A ))⊆ MSFRAMSFAS(A ),

4. MSFRAMSFAS(MSFRAMSFAS(A ))⊆ MSFRAMSFAS(A ),

5. MSFRAMSFAS(MSFRAMSFAS(A ))⊇ MSFRAMSFAS(A ).

Proof We use the standard pointwise argument.

1. By Theorem 1(1) A (x)≤MSFRAMSFAS(A )(x) for any fuzzy set A . Now replace A
by MSFRAMSFAS(A ) then we get MSFRAMSFAS(A )(x)≤MSFRAMSFAS(MSFRAMSFAS(A ))(x).

Hence

MSFRAMSFAS(A )(x)⊆ MSFRAMSFAS(MSFRAMSFAS(A ))(x).

2. By Theorem 1(1) MSFRAMSFAS(µA ) ⊆ µA and by using Theorem 2(1) it can be
written that MSFRAMSFAS(MSFRAMSFAS(A ))⊆ MSFRAMSFAS(A ).

3. By Theorem 1(1) MSFRAMSFAS(A )(x) ≤ A (x) for any fuzzy set A . Now replace
A by MSFRAMSFAS(A ) then we get

MSFRAMSFAS(MSFRAMSFAS(A ))(x)≤ MSFRAMSFAS(A )(x).

Hence
MSFRAMSFAS(MSFRAMSFAS(A ))⊆ MSFRAMSFAS(A ).

4. By Theorem 1(1) µA ⊆ MSFRAMSFAS(A ) and by using Theorem 2(2) it can be
written that MSFRAMSFAS(MSFRAMSFAS(A ))⊇ MSFRAMSFAS(A ).

�

Remark 2 The fuzzification presented in this proposal uses Godel conjunction and dis-
junction (min and max) and Lukasiewicz negation. All the results remain true for all other
type of the standard fuzzy connectives (e.g. product conjunction, disjunction and negation,
Lukasiewicz conjunction and disjunction).
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Example 1 Let U = {u1,u2,u3,u4,u5,u6} be the set of nine electricity provider operators
(universe set) and A = {e1,e2,e3,e4} ⊆ E, where e1 represents the online billing facility,
e2 represents fluctuation in voltage, e3 represents life security breakers, e4 represents after
sale service. The soft fuzzy set (F̃ ,A) is representing this data in Table 1.

F̃ : A → P(U)
φ : U → P(A)

Table 1. Soft set (F,A)

u1 u2 u3 u4 u5 u6

e1 0.2 0.8 0.8 0.2 0.8 0.2
e2 0.5 0 1 0.5 0 0.5
e3 0.9 0 0 0.9 0 0.9
e4 0 0.7 0 0 0.7 0

A = {(u1,0.3),(u2,0.4),(u3,0),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(A ) = {(u1,0),(u2,0),(u3,0),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(A ) = {(u1,0.3),(u2,0.7),(u3,0),(u4,0.2),(u5,0.7),(u6,0.2)}
B = {(u1,0),(u2,0.4),(u3,0),(u4,0.7),(u5,0),(u6,0)}
MSFRAMSFAS(B) = {(u1,0),(u2,0),(u3,0),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(B) = {(u1,0.2),(u2,0.7),(u3,0),(u4,0.7),(u5,0.7),(u6,0.2)}
MSFRAMSFAS(A )∪MSFRAMSFAS(B)= {(u1,0.3),(u2,0.7),(u3,0),(u4,0.7), (u5, 0.7),

(u6, 0.2)}
A ∪B = {(u1,0.3),(u2,0.4),(u3,0),(u4,0.7),(u5,0),(u6,0)}
MSFRAMSFAS(A ∪B) = {(u1,0.3),(u2,0.7),(u3,0),(u4,0.7),(u5,0.7),(u6,0.2)}
Note that

MSFRAMSFAS(A )∪MSFRAMSFAS(B) = MSFRAMSFAS(A ∪B).

A ∩B = {(u1,0),(u2,0.4),(u3,0),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(A ∩B) = {(u1,0),(u2,0.7),(u3,0),(u4,0),(u5,0.7),(u6,0)}
MSFRAMSFAS(A ∩B) = {(u1,0),(u2,0),(u3,0),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(B)∩MSFRAMSFAS(A ) = MSFRAMSFAS(A ∩B).
MSFRAMSFAS(A )∩MSFRAMSFAS(B)= {(u1,0.2),(u2,0.7),(u3,0),(u4,0.2), (u5, 0.7),

(u6, 0.2)}
Where

MSFRAMSFAS(A )∩MSFRAMSFAS(B)* MSFRAMSFAS(A ∩B).

C = {(u1,0),(u2,0.4),(u3,0.6),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(C ) = {(u1,0),(u2,0),(u3,0.6),(u4,0),(u5,0),(u6,0)}
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MSFRAMSFAS(C ) = {(u1,0),(u2,0.7),(u3,0.8),(u4,0),(u5,0.7),(u6,0)}
D = {(u1,0),(u2,0),(u3,0.3),(u4,0),(u5,0.7),(u6,0)}
MSFRAMSFAS(D) = {(u1,0),(u2,0),(u3,0.3),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(D) = {(u1,0),(u2,0.7),(u3,0.8),(u4,0),(u5,0.7),(u6,0)}
C ∪D = {(u1,0),(u2,0.4),(u3,0.6),(u4,0),(u5,0.7),(u6,0)}
MSFRAMSFAS(C ∪D) = {(u1,0),(u2,0.4),(u3,0.6),(u4,0),(u5,0.7),(u6,0)}
MSFRAMSFAS(C )∪MSFRAMSFAS(D) = {(u1,0),(u2,0),(u3,0.6),(u4,0), (u5, 0), (u6,

0)}
Note that

MSFRAMSFAS(C ∪D)* MSFRAMSFAS(C )∪MSFRAMSFAS(D).

MSFRAMSFAS(C ∪D) = {(u1,0),(u2,0.7),(u3,0.8),(u4,0),(u5,0.7),(u6,0)}
C ∩D = {(u1,0),(u2,0),(u3,0.3),(u4,0),(u5,0),(u6,0)}
MSFRAMSFAS(C ∩D) = {(u1,0),(u2,0),(u3,0.3),(u4,0),(u5,0),(u6,0)}
Note that

MSFRAMSFAS(C ∩D) = MSFRAMSFAS(C )∩MSFRAMSFAS(D).

Remark 3 In general

MSFRAMSFAS(A
c)* (MSFRAMSFAS(A ))c

MSFRAMSFAS(A
c)+ (MSFRAMSFAS(A ))c,

(MSFRAMSFAS(A ))c * MSFRAMSFAS(A
c)

and
(MSFRAMSFAS(A ))c + MSFRAMSFAS(A

c).

Example 2 Let U = {u1,u2,u3,u4,u5,u6,u7,u8,u9} be the set of nine electricity provider
operators (universe set) and A = {e1,e2,e3,e4} ⊆ E, where e1 represents the online billing
facility, e2 represents fluctuation in voltage, e3 represents life security breakers, e4 repre-
sents after sale service. The soft fuzzy set (F̃ ,A) is representing this data in Table 2.

F̃ : A → P(U)
φ : U → P(A)

Table 2. Soft set (F,A)

u1 u2 u3 u4 u5 u6 u7 u8 u9

e1 0.9 0.7 0.2 0.7 0.7 0.8 0 0 0
e2 0.8 0 0.3 0.9 0 0.9 0 0 0
e3 1 0 0 0.2 0 0.6 0 0 0
e4 0 0.3 0 0 0.4 0 0 0 0
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Then the MSFAS (U,φ) will be φ(u1)= {(e1,0.9),(e2,0.8),(e3,1)}, φ(u2)= {(e1,0.7),(e4,0.4)},
φ(u3)= {(e1,0.2),(e2,0.3)}, φ(u4)= {(e1,0.7),(e2,0.9),(e3,0.2)}, φ(u5)= {(e1,0.7),(e4,0.4)}=
φ(u2), φ(u6) = {(e1,0.8),(e2,0.9),(e3,0.6)}, (φ(u6))0 = (φ(u4))0 = (φ(u1))0, φ(u7) =
/0 = φ(u8) = φ(u9).

If we take A = {(u1,0.3),(u2,0.4),(u3,1),(u4,0),(u5,1),(u6,0),(u7,0.2), (u8, 0), (u9,
1)}, then A c = {(u1,0.7),(u2,0.6),(u3,0),(u4,1),(u5,0), (u6, 1), (u7, 0.8), (u8, 1), (u9,
0)}.

(A )0 = {u1,u2,u3,u5,u7,u9},((A )0)
c = {u4,u6,u8}

(A c)0 = {u1,u2,u4,u6,u7,u8},((A c)0)
c = {u3,u5,u9}

Next we calculate some approximations.
MSFRAMSFAS(A ) = {(u1,0.3), (u2,0.4), (u3,0.3), (u4,0), (u5,0.7), (u6,0), (u7,0),

(u8,0), (u9,0)}
(MSFRAMSFAS(A ))c = {(u1,0.7), (u2,0.6), (u3,0.7), (u4,1), (u5,0.3), (u6,1), (u7,1),

(u8,1), (u9,1)}
MSFRAMSFAS(A

c)= {(u1,0.7), (u2,0), (u3,0), (u4,0.9), (u5,0), (u6,0.9), (u7,0), (u8,0),
(u9,0)}

(MSFRAMSFAS(A
c))c = {(u1,0.3), (u2,1), (u3,1), (u4,0.1), (u5,1), (u6,0.1), (u7,1),

(u8,1), (u9,1)}
MSFRAMSFAS(A )= {(u1,0.8), (u2,0.4), (u3,1), (u4,0), (u5,1), (u6,0), (u7,0.2), (u8,0),

(u9,1)}
(MSFRAMSFAS(A ))c = {(u1,0.2), (u2,0.6), (u3,0), (u4,1), (u5,0), (u6,1), (u7,0.8),

(u8,1), (u9,0)}
MSFRAMSFAS(A c) = {(u1,0.8), (u2,0.6), (u3,0), (u4,1), (u5,0.4), (u6,1), (u7,0.8),

(u8,1), (u9,0)}
(MSFRAMSFAS(A c))c = {(u1,0.2), (u2,0.4), (u3,1), (u4,0), (u5,0.6), (u6,0), (u7,0.2),

(u8,0), (u9,1)}
Note that

(MSFRAMSFAS(A ))c(u1)< MSFRAMSFAS(A
c)(u1)

and
MSFRAMSFAS(A

c)(u3)< (MSFRAMSFAS(A ))c(u3).

Thus
MSFRAMSFAS(A

c)* (MSFRAMSFAS(A ))c

and
MSFRAMSFAS(A

c)+ (MSFRAMSFAS(A ))c.

Note that
MSFRAMSFAS(A

c)(u1)> (MSFRAMSFAS(A ))c(u1)

and
(MSFRAMSFAS(A ))c(u2)> MSFRAMSFAS(A

c)(u2).
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So
(MSFRAMSFAS(A ))c * MSFRAMSFAS(A

c)

and
(MSFRAMSFAS(A ))c + MSFRAMSFAS(A

c).

It is easy to note that

(MSFRAMSFAS(A
c))c * MSFRAMSFAS(A )

and
(MSFRAMSFAS(A

c))c + MSFRAMSFAS(A ).

Therefore
MSFRAMSFAS(A )* (MSFRAMSFAS(A

c))c

and
MSFRAMSFAS(A )+ (MSFRAMSFAS(A

c))c.

MSFRAMSFAS(A ) = {(u1,0.3), (u2,0.4), (u3,0.3), (u4,0), (u5,0.7), (u6,0), (u7,0),
(u8,0), (u9,0)}

(MSFRAMSFAS(A ))0 = {u1,u2,u3,u5},((MSFRAMSFAS(A ))0)
c = {u4,u6,u7,u8,u9}

MSFRAMSFAS(MSFRAMSFAS(A )) = {(u1,0.3), (u2,0.4), (u3,0.3), (u4,0), (u5,0.7),
(u6,0), (u7,0), (u8,0), (u9,0)}

MSFRAMSFAS(MSFRAMSFAS(A )) = {(u1,0.8), (u2,0.4), (u3,0.3), (u4,0), (u5,0.7),
(u6, 0), (u7, 0), (u8, 0), (u9, 0)}

Note that

MSFRAMSFAS(MSFRAMSFAS(A )) = MSFRAMSFAS(A )

and
MSFRAMSFAS(MSFRAMSFAS(A ))⊃ MSFRAMSFAS(A ).

MSFRAMSFAS(A )= {(u1,0.8), (u2,0.4), (u3,1), (u4,0), (u5,1), (u6,0), (u7,0.2), (u8,0),
(u9,1)}

MSFRAMSFAS(A ) = {u1,u2,u3,u5,u7,u9},(MSFRAMSFAS(A ))c = {u4,u6,u8}
MSFRAMSFAS(MSFRAMSFAS(A )) = {(u1,0.8), (u2,0.4), (u3,0.3), (u4,0), (u5,0.7),

(u6,0), (u7,0), (u8,0), (u9,0)}
MSFRAMSFAS(MSFRAMSFAS(A ))= {(u1,0.8), (u2,0.4), (u3,1), (u4,0), (u5,1), (u6,0),

(u7,0.2), (u8,0), (u9,1)}
Thus

MSFRAMSFAS(MSFRAMSFAS(A ))⊂ MSFRAMSFAS(A )

and
MSFRAMSFAS(MSFRAMSFAS(A )) = MSFRAMSFAS(A ).
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4 Conclusion

Fuzzy set theory has been used successfully to handle uncertainty and vagueness in infor-
mation. Soft rough set theory is applied for the approximation of undefinable sets. But there
are several deficiencies while doing approximations of undefinable fuzzy sets not satisfying
the basic properties of approximation measure in soft fuzzy approximation space. MSFRSs
have been introduced to overcome these deficiencies. MSFRS give better approximations
of undefinable fuzzy sets. Our study has potential for further new research directions.
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