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Non-normal cone metric and cone b-metric spaces and fixed
point results

Z. Kadelburg, Lj. Paunović, S. Radenović, G. Soleimani Rad

Abstract: We show that most fixed point results obtained so far in cone metric spaces over
solid non-normal cones can be easily reduced to the case of solid normal cones and, hence,
their proofs can be made much simpler. Also, cone tvs-valued spaces over solid cones are not
an essential generalization of cone metric spaces. These results are consequences of the simple
fact that each solid cone in a topological vector space is in fact normal under a suitably defined
norm. The proof follows by using the technique of Minkowski functional. As an application
of these results, we prove an extension of the classical Nemytzki-Edelstein fixed point result to
(tvs)-(b)-cone metric spaces over solid cones.
Keywords: Topological vector space; ordered normed space; cone metric space; b-metric
space; tvs-cone b-metric space; Minkowski functional.

1 Introduction

The connection between cones and order relations in vector spaces is very well known. In
particular, the usage of ordered normed spaces in Functional Analysis date back to 1940’s
(see [24, 25, 30, 31]). It seems that Kurepa ([26]) was the first to use ordered normed spaces
as the codomain of a metric (see [28]). Later on, such “metric” spaces appeared occasion-
ally under various names: K-metric spaces, abstract metric space, generalized metric spaces
(see, e.g., [32]).

The spaces of this type were re-introduced in 2007 by Huang and Zhang [16] under
the name of cone metric spaces. Among other things, they used the relation ≪ (mentioned
already in [24]) which could be defined under the supposition that the underlying cone had
a nonempty interior (such cones are usually called solid). Later, these definitions were
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extended for topological vector space-valued cone metric space (or tvs-cone metric space)
in [4, 10, 21]. Afterwards, several authors obtained a lot of fixed point results in (tvs)-cone
metric spaces.

Several authors showed (by various methods) that each cone metric space over a solid
cone is metrizable (see, e.g., [2, 5, 10, 15, 20, 23]). However, this does not mean that all
fixed point results can be reduced in this way to their standard metric counterparts. For
example, it is still not known whether scalar and vector versions of the celebrated Caristi’s
fixed point result are equivalent (see [22]).

In the paper [16], the underlying cones were supposed to be normal (see the definition
in next section). It was shown in [29] that such assumption is sometimes not necessary.
Hence, further, a lot of authors obtained (common) fixed point results for non-normal solid
cones (see a survey of these results until 2011 in [19]; a lot of papers appeared afterwards,
too). However, the respective proofs were usually rather long and not direct extensions of
the known proofs from the standard metric case.

In this paper, we show that most fixed point results obtained so far in cone metric
spaces over solid non-normal cones can be easily reduced to the case of solid normal cones
and, hence, their proofs can be made much simpler. Also, cone tvs-valued spaces over
solid cones are not an essential generalization of cone metric spaces. These results are
consequences of the simple fact that each solid cone in a tvs is in fact normal under a
suitably defined norm (not always equivalent with the original one). The proof follows by
using the technique of Minkowski functional, already used in [20]. As an application of
these results, we prove an extension of the classical Nemytzki-Edelstein fixed point result
[13, 27] to tvs-cone metric spaces over solid cones.

Continuing in this direction, we consider tvs-cone b-metric spaces as a generalization
of b-metric spaces and prove that some of fixed point theorems in cone b-metric spaces can
be obtained in an easier way. Our method is even easier than that of Du and Karapinar [11]
and can be considered as a continuation of the papers [5, 10, 20].

2 Preliminaries

Throughout the paper, (E, t) will be a real Hausdorff topological vector space (abbr. tvs)
with the zero vector denoted as θ . A cone in E is a proper nonempty and closed subset C
which satisfies: 1◦ C+C ⊂C, 2◦ λC ⊂C for λ ≥ 0, and 2◦ C∩ (−C) = {θ}. If the cone C
has a nonempty interior intC then it is called solid.

Example 1 Some examples of solid cones are {x = (xi)
n
i=1 ∈Rn : xi ≥ 0, i = 1, . . . ,n} in Rn

and {x ∈C[a,b] : x(t)≥ 0, a ≤ t ≤ b} in C[a,b].
However, if one defines a cone in a similar manner in some other spaces, e.g., in c0, lp

(p > 0), Lp (p > 0), it appears to have empty interior [8, 31].
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Each cone C defines a partial order ≼ on the vector space E by x ≼ y ⇔ y−x ∈C. We
will write x ≺ y when x ≼ y and x ̸= y. If the cone C is solid, x ≪ y denotes that y−x ∈ intC.
The triple (E, t,C) is an ordered topological vector space.

For a pair of elements x,y ∈ E such that x ≼ y, put [x,y] = {z ∈ E : x ≼ z ≼ y}. The
sets of the form [x,y] are named order-intervals. A subset A of E is called order-convex if
[x,y]⊂ A whenever x,y ∈ A and x ≼ y. Ordered topological vector space is order-convex if it
has a base of neighborhoods of θ consisting of order-convex subsets. In this case, the cone
C is called normal. When E is a normed space, i.e., the topology t is induced by a norm
∥ · ∥, the last condition is fulfilled if and only if its unit ball is order-convex. This can be
equivalently expressed as: there is a number m such that x,y ∈ E and θ ≼ x ≼ y imply that
∥x∥ ≤ m∥y∥. The minimal constant m satisfying the previous condition is called the normal
constant of C. Obviously, the normal constant is always greater or equal to 1. In the case
when m = 1, i.e., when θ ≼ x ≼ y implies that ∥x∥ ≤ ∥y∥, the cone C is called monotone.

Lemma 1 ([24], for the proof see [9, 31]) The following conditions are equivalent for a
cone C in the normed space (E,∥ · ∥):

(1) C is normal;

(2) there exists a norm ∥ · ∥1 on E, equivalent to the given norm ∥ · ∥, such that the cone
C is monotone w.r.t. ∥ · ∥1.

The following example is classical.

Example 2 Let E = C1
R[0,1], with ∥x∥ = ∥x∥∞ + ∥x′∥∞, C = {x ∈ E : x(t) ≥ 0, t ∈ [0,1]}.

This cone is solid but non-normal. Consider, for example, xn(t) = tn

n and yn(t) = 1
n . Then

θ ≼ xn ≼ yn, and limn→∞ yn = θ , but ∥xn∥ = maxt∈[0,1]
∣∣ tn

n

∣∣+maxt∈[0,1] |tn−1| = 1
n +1 > 1;

hence {xn} does not converge to zero. It follows that C is a non-normal cone.

Definition 1 [4, 10, 16, 21] Let X be a nonempty set and (E, t,C) be an ordered tvs. Sup-
pose that a function p : X ×X → E satisfies the following conditions:

(p1) θ ≼ p(x,y) for all x,y ∈ X and p(x,y) = θ if and only if x = y;

(p2) p(x,y) = p(y,x) for all x,y ∈ X;

(p3) p(x,z)≼ p(x,y)+ p(y,z) for all x,y,z ∈ X.

Then p is called a tvs-cone metric and (X , p) is called a tvs-cone metric space.
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3 Tvs-cone metric spaces

Let V be an absolutely convex and absorbing subset of a vector space E. Recall that its
Minkowski functional is defined by qV (x) = inf{λ > 0 : x ∈ λV} for x ∈ E. It is a semi-
norm on E (see, e.g. [30, II.1.5]) and V ⊂W implies that qW (x)≤ qV (x) for x ∈ E.

Now, let (E, t,C) be an ordered tvs with C being solid, and let e ∈ intC. Then [−e,e] =
(C− e)∩ (e−C) = {z ∈ E : −e ≼ z ≼ e} is an absolutely convex neighborhood of θ (for
the proof see, e.g., [31, Proposition 2.2]). Its Minkowski functional q[−e,e] will be denoted
by qe. Note that int [−e,e] = (intC− e)∩ (e− intC), and qe is an increasing function on C.

Lemma 2 The functional qe is a monotone norm on (E,C), i.e., C is a cone which is solid
and normal w.r.t. qe.

Proof In order to prove that qe is a norm on E, it suffices to show that qe(x) = 0 implies that
x = θ . Suppose that qe(x) = 0 for some x ∈ E. There is a sequence {λn} of positive scalars
such that λn → 0 as n → ∞ and x ∈ λn[−e,e], i.e., λne− x ≽ θ and λne+ x ≽ θ . Passing to
the limit as n → ∞ and using that C is a cone in the given tvs (E, t), we get that x = θ .

The obtained norm qe is obviously monotone, i.e., θ ≼ x ≼ y implies that qe(x)≤ qe(y).
Solidness and closedness of C w.r.t. qe are proved, e.g., in [9, Proposition 19.9] and [1,

Theorem 2.55].

�

Remark 1 In the case when the given space E is normed, we obtain in this way two norms
on it: the original norm and qe. It is important to notice that if C is a normal cone w.r.t.
the original norm, then these two norms are equivalent [9]. However, if this is not the case,
then the two norms cannot be equivalent, because of Lemma 1 and Example 2.

Note also that if e1,e2 are two points from intC, then the norms qe1 and qe2 are always
equivalent, i.e., they define the same topology. This topology is order-convex, i.e., it has
a base of θ -neighborhoods consisting of order-convex subsets. This follows from the fact
that if the cone C is normal (with the normal constant 1) and e1,e2 ∈ intC, then each of the
order-intervals [−e1,e1], [−e2,e2] absorbs the other.

Combining now Lemma 2 with Theorems 3.1 and 3.2 from [20], we deduce that:

(i) Each tvs-cone metric space with the underlying cone C that is solid in an ordered tvs
(E, t,C) is in fact a cone metric space over (the same) cone C which is normal in an
appropriate ordered normed space (E,∥ · ∥,C).

(ii) Each cone metric space over a solid cone is also a cone metric space over a solid and
normal cone (in an appropriate norm).



Non-normal cone metric and cone b-metric spaces and fixed point results 181

We note that it is not clear whether these conclusions can be obtained using scalarization
functions (which are not norms) that were utilized in several articles following [10].

We will apply now the obtained results to show how some cone metric versions of well
known fixed point results can be obtained in an easy way. We first prove the following

Lemma 3 If (E, t,C) is an ordered tvs with a solid cone C, and e ∈ intC is arbitrary, then

θ ≼ x ≪ y implies that qe(x)< qe(y).

Proof Suppose that x,y∈E and θ ≼ x≪ y. Then, considering the sequence {1
n y} (obviously

converging to θ ) and y− x ∈ intC, we get that

1
n

y ≪ y− x, i.e., x ≪
(

1− 1
n

)
y,

for n sufficiently large. It follows that

qe(x)≤ qe

((
1− 1

n

)
y
)
=

(
1− 1

n

)
qe(y)< qe(y).

�

Remark 2 The previous lemma can be viewed as a refinement of [14, Lemma 2.1].

In [16, Theorem 2], Huang and Zhang proved a cone metric version of celebrated
Nemytzki-Edelstein fixed point theorem ([13, 27]) in the case when the underlying cone
is regular. We will prove here that it holds true for arbitrary solid cones, with a modified
contractive condition.

Theorem 1 Let (X , p) be a tvs-cone metric space over a solid cone C in E, and let f : X →
X be a mapping satisfying

p( f x, f y)≪ p(x,y), for all x ̸= y. (1)

Suppose that there is x0 ∈ X such that the respective Picard sequence { f nx0} has a conver-
gent subsequence (in particular, this is the case when (X , p) is sequentially compact). Then
f has a unique fixed point, and for each positive integer n, it is Fix( f ) = Fix( f n), i.e., f
has the property P.

Proof Take arbitrary e ∈ intC and form the respective monotone norm qe on E according
to Lemma 2. Denote d = qe ◦ p, i.e., d(x,y) = qe(p(x,y)) for x,y ∈ X . Then d is a metric
on X (by [20, Theorem 3.1]) and, using Lemma 3, the relation (1) implies that

d( f x, f y)< d(x,y), for all x ̸= y.
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Now the proof proceeds similarly as in the metric case.
We will prove just the property P. Suppose that u ∈ Fix( f n), but u /∈ Fix( f ), where n is

the smallest such index. Then

d(u, f u) = d( f nu, f n+1u)< d( f n−1u, f nu)< · · ·< d(u, f u),

a contradiction. Hence, u∈Fix( f ), i.e., Fix( f n)⊂Fix( f ). The reverse inclusion is obvious.

�

Formulated in another way:

Corollary 1 The scalar and vector (with ≪ used in the condition (1)) versions of Nemytzki-
Edelstein fixed point theorem are equivalent.

Question 1 Do the conclusions of Theorem 1 hold if the cone C is just solid (and not
regular) and ≪ in (1) is replaced by ≺?

4 Tvs-cone b-metric spaces

b-metric spaces (sometimes called metric-type spaces), as another generalization of metric
spaces were first considered by I.A. Bakhtin [3] and Czerwik [8]. Cone b-metric spaces
were introduced in [7] and [18]. Extension to tvs case can be done in an obvious way:

Definition 2 Let X be a nonempty set, (E, t,C) be an ordered tvs and s ≥ 1 be a given real
number. A function ps : X ×X → E is called a tvs-cone b-metric and (X , ps) is called a
tvs-cone b-metric space if the following conditions hold:

(ps1) θ ≼ ps(x,y) for all x,y ∈ X and ps(x,y) = θ if and only if x = y;

(ps2) ps(x,y) = ps(y,x) for all x,y ∈ X;

(ps3) ps(x,z)≼ s[ps(x,y)+ ps(y,z)] for all x,y,z ∈ X.

If (E,∥ ·∥,C) is an ordered normed space, then ps is called a cone b-metric, and (X ,d) is a
cone b-metric space.

Obviously, for s = 1, (tvs)-cone b-metric space is a (tvs)-cone metric space.
Most of the standard notions concerning convergence of sequences can be introduced in

these spaces in the usual way. The main obstacle in deriving results is the fact that a (cone)
b-metric is not always a continuous function (in the sense that xn → x and yn → y imply that
ps(xn,yn)→ ps(x,y) as n → ∞), see, e.g., [17, Example 2].
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Lemma 4 Let (X , ps) be a tvs-cone b-metric space (with the parameter s) over a solid
cone C, e ∈ intC and let qe be the corresponding Minkowski functional of [−e,e]. Then
dq = qe ◦ ps is a b-metric on X (with the same parameter s).

Proof Clearly, dq(x,y) = dq(y,x) for all x,y ∈ X and x = y implies that dq(x,y) = 0. Also,
since qe is a semi-norm and ps is a tvs-cone b-metric, we have

qe(ps(x,z))≤ s(qe(ps(x,y))+qe(ps(y,z))),

i.e.,
dq(x,z)≤ s[dq(x,y)+dq(y,z)]

for all x,y,z ∈ X . Now, we prove that dq(x,y) = 0 implies that x = y. Let qe ◦ ps(x,y) = 0.
Then inf{λ > 0 : ps(x,y) ∈ λ [−e,e]}= 0. Thus, there exists a sequence of positive scalars
λn → 0 such that ps(x,y) ∈ λn[−e,e]. Suppose, to the contrary, that x ̸= y. Then, since
θ ≺ ps(x,y) ≼ λne, for each c ∈ intC there exists n0 such that ps(x,y) ≪ c for n ≥ n0.
Since c is an arbitrary interior point of the cone C it follows that ps(x,y) = θ . This is a
contradiction. Thus, the proof of lemma is complete.

�

Remark 3 Under the assumptions from the previous lemma, similarly as in [20, Theorem
3.2], the following properties can be easily deduced:

(i) A sequence {xn} converges to x in (X , ps) if and only if dq(xn,x)→ 0 as n → ∞;

(ii) {xn} is a Cauchy sequence in (X , ps) if and only if {xn} is a Cauchy sequence in
(X ,dq);

(iii) (X , ps) is complete if and only if (X ,dq) is complete.

As a sample, we show how a tvs-cone b-metric version of Banach Contraction Principle
can be easily deduced.

Theorem 2 Let (X , ps) be a complete tvs-cone b-metric space with s ≥ 1 and λ ∈ [0,1). If
f : X → X satisfies the contractive condition

ps( f x, f y)≼ λ ps(x,y), (2)

for all x,y ∈ X, then f has a unique fixed point in X. Moreover, for each x ∈ X, the Picard
sequence { f nx} converges to the unique fixed point of f .
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Proof Set dq = qe ◦ ps. Lemma 4 and Remark 3 imply that (X ,dq) is a complete b-metric
space. Also, we conclude that (2) implies that

dq( f x, f y)≤ λdq(x,y)

for all x,y ∈ X . Thus, the conclusion follows from [12, Theorem 2.1].

�
In a similar way, a lot of fixed point results under various contractive conditions can be

proved in tvs-cone b-metric spaces, by reducing them to the respective results in b-metric
spaces. Note that most of them need a modification compared with the respective standard
metric results, in the sense that conditions on contractive constants depend on parameter s
(the case of Banach principle is an exception), see the respective discussion in [12].

We finish by applying our previous results in order to prove tvs-cone b-metric version
of Nemytzki-Edelstein theorem in the case when tvs-cone b-metric is continuous. For dis-
cussion about (sequential) compactness in these spaces see [18].

Theorem 1 Let (X , ps) be a tvs-cone b-metric space over a solid cone C in E, such that the
tvs-cone b-metric ps is continuous. Let f : X → X be a mapping satisfying

ps( f x, f y)≪ ps(x,y), for all x ̸= y. (3)

Suppose that there is x0 ∈ X such that the respective Picard sequence { f nx0} has a con-
vergent subsequence (in particular, this is the case when (X , ps) is sequentially compact).
Then f has a unique fixed point.

Proof Similarly as in the proof of Theorem 1, take arbitrary e ∈ intC and form the respec-
tive monotone norm qe on E according to Lemma 2. Denote dq = qe ◦ ps, i.e., dq(x,y) =
qe(ps(x,y)) for x,y ∈ X . Then, by Lemma 4, dq is a b-metric on X (with the same parameter
s as ps). Moreover, dq is continuous, together with ps. Applying Lemma 3, the relation (3)
implies that

dq( f x, f y)< dq(x,y), for all x ̸= y.

Now the proof proceeds similarly as in the b-metric case (see, e.g., [6, Theorem 3.1]).

�

Question 2 Does the previous result hold true if the b-metric ps is not continuous?
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