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Remark on Lower Bound for Forgotten Topological Index

E. I. Milovanović, M. M. Matejić, I. Ž. Milovanović

Abstract: Let G be a simple connected graph with n vertices and m edges with vertex de-
gree sequence d1 ≥ d2 ≥ ·· · ≥ dn > 0. Denote by F = ∑n

i=1 d3
i forgotten topological index of

graph G. In this paper we give some lower bounds for invariant F . Also, obtained bounds are
compared with some known bounds from the literature.
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1 Introduction

Let G be a simple connected graph with n vertices and m edges. Denote by d1 ≥ d2 ≥ ·· · ≥
dn > 0 a sequence of vertex degrees of graph G. Throughout this paper we use standard
notation: ∆ = d1, ∆2 = d2, and δ = dn.

In [5] vertex-degree-based topological indices, named the first and the second Zagreb
indices M1 and M2, were defined as

M1 = M1(G) =
n

∑
i=1

d2
i and M2 = M2(G) = ∑

i∼ j
did j,

where i ∼ j denotes the adjacency of the vertices i and j in graph G.
Details on these topological indices can be found in [1, 2, 6, 7].
In [4] (see also [6]) forgotten topological index F was defined as

F = F(G) =
n

∑
i=1

d3
i .

Let E = {e1,e2, . . . ,em} be a set of edges of graph G and d(e1) ≥ d(e2) ≥ ·· · ≥ d(em)
sequence of edge degrees. In [10], an edge-degree graph topological index, named refor-
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mulated Zagreb index, EM1, is defined as

EM1 = EM1(G) =
m

∑
i=1

d(ei)
2.

Of course, it is easy to note that EM1 is not new topological index, since it is the first
Zagreb index for a line-graph L = L(G) of graph G.

In this paper we state two inequalities that set lower bounds for invariant F in terms of
topological index M1 and graph parameters m, ∆, ∆2, and δ . Obtained results will be used
to determine lower bounds for topological indices EM1 and M2.

2 Preliminaries

In this section we give some known results for invariants F , M1 and EM1 that will be needed
in the subsequent considerations.

In [4] the following inequality for graph invariant F was proved

F ≥ M2
1

2m
, (1)

with equality if and only if G is a regular graph.
The following equality was proved in [15] for graph invariant EM1

EM1 = F +2M2 −4M1 +4m. (2)

In [11] it was proved

EM1 ≥
M2

1
2m

+2M2 −4M1 +4m. (3)

Equality holds if and only if L(G) is regular.
In [9] it was proved

F ≤ ∆2 +δ 2

∆δ
M2. (4)

3 Main result

The following theorem establishes lower bound for invariant F in terms of topological index
M1 and graph parameters m, ∆ and ∆2.

Theorem 3.1. Let G be a simple connected graph with n, n ≥ 2, vertices and m edges. Then

F ≥ M2
1

2m
+

∆∆2 (∆−∆2)
2

2m
. (5)

Equality holds if and only if G is regular graph.
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Proof. Let p = (pi), i = 1,2, . . . ,m, be positive real number sequence, and a = (ai) and
b = (bi), i = 1,2, . . . ,m, sequences of non-negative real numbers of similar monotonicity.
In [14] (see also [13]) it was proved that

Tn(a,b; p)≥ Tn−1(a,b; p), n ≥ 2, (6)

where

Tn(a,b; p) =
n

∑
i=1

pi

n

∑
i=1

piaibi −
n

∑
i=1

piai

n

∑
i=1

pibi.

From (6) it follows

Tn(a,b; p)≥ Tn−1(a,b; p)≥ ·· · ≥ T2(a,b; p)≥ 0.

Since

T2(a,b; p) =
2

∑
i=1

pi

2

∑
i=1

piaibi −
2

∑
i=1

piai

2

∑
i=1

pibi

= (p1 + p2)(p1a1b1 + p2a2b2)− (p1a1 + p2a2)(p1b1 + p2b2)

= p1 p2(a1 −a2)(b1 −b2),

we have that
n

∑
i=1

pi

n

∑
i=1

piaibi ≥
n

∑
i=1

piai

n

∑
i=1

pibi + p1 p2(a1 −a2)(b1 −b2). (7)

For pi = ai = bi = di, i = 1,2, . . . ,n, this inequality becomes

n

∑
i=1

di

n

∑
i=1

d3
i ≥

(
n

∑
i=1

d2
i

)2

+d1d2(d1 −d2)
2,

wherefrom we get (5).

Remark 3.2. Since
M2

1
2m

+
∆∆2 (∆−∆2)

2

2m
≥ M2

1
2m

,

the inequality (5) is stronger than (1).

Corollary 3.3. Let G be a simple connected graph with n, n ≥ 2, vertices and m edges.
Then

F ≥ 8m3

n2 +
∆∆2 (∆−∆2)

2

2m
, (8)

with equality if and only if G is regular graph.
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Proof. Inequality (8) is a direct consequence of (5) and the following inequality

M1 ≥
4m2

n
, (9)

proved in [3].

Corollary 3.4. Let G be a simple connected graph with n, n ≥ 2, vertices and m edges.
Then

M2 ≥
∆δ

2m(∆2 +δ 2)

(
M2

1 +∆∆2(∆−∆2)
2) , (10)

with equality if and only if G is regular graph.

Corollary 3.5. Let G be a simple connected graph with n, n ≥ 2, vertices and m edges.
Then

EM1 ≥
M2

1
2m

+2M2 −4M1 +4m+
∆∆2(∆−∆2)

2

2m
, (11)

with equality if and only if G is regular.

Remark 3.6. Since
∆∆2(∆−∆2)

2

2m
≥ 0,

the inequality (11) is stronger than (3).

Remark 3.7. Note that inequality (7) is a generalization of Chebyshev inequality (see for
example [12]).

Theorem 3.8. Let G be a simple connected graph with n, n ≥ 3, vertices and m edges. Then

F ≥ δ 3 +
(M1 −δ 2)2

2m−δ
+

∆∆2(∆−∆2)
2

2m−δ
. (12)

Equality holds if and only if G is regular graph.

Proof. According to (7) we have that

n−1

∑
i=1

pi

n−1

∑
i=1

piaibi ≥
n−1

∑
i=1

piai

n−1

∑
i=1

pibi + p1 p2(a1 −a2)(b1 −b2).

Putting pi = ai = bi = di, i = 1,2, . . . ,n−1, in this inequality, we get

n−1

∑
i=1

di

n−1

∑
i=1

d3
i ≥

(
n−1

∑
i=1

d2
i

)2

+d1d2(d1 −d2)
2,

i.e.
(2m−δ )(F −δ 3)≥ (M1 −δ 2)2 +∆∆2 (∆−∆2)

2 ,

wherefrom we obtain inequality (12).
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Corollary 3.9. Let G be a simple connected graph with n, n ≥ 3, vertices and m edges.
Then

F ≥ 2mδ 2 +
∆∆2(∆−∆2)

2

2m−δ
,

with equality if and only if G is regular.

Corollary 3.10. Let G be a simple connected graph with n, n ≥ 3, vertices and m edges.
Then

M2 ≥
∆δ

∆2 +δ 2

(
2mδ 2 +

∆∆2(∆−∆2)
2

2m−δ

)
.

Corollary 3.11. Let G be a simple connected graph with n, n ≥ 3, vertices and m edges.
Then

EM1 ≥ δ 3 +
(M1 −δ 2)2

2m−δ
+

∆∆2(∆−∆2)
2

2m−δ
+2M2 −4M1 +4m,

with equality if and only if G is regular.

Theorem 3.12. Let G be a simple connected graph with n, n ≥ 2, vertices and m edges.
Then

M1 ≥
4m2

n
+

(∆−∆2)
2

n
. (13)

Equality holds if and only if G is regular graph.

Proof. For pi = 1, ai = bi = di, i = 1,2, . . . ,n, inequality (7) becomes

n
n

∑
i=1

d2
i ≥

(
n

∑
i=1

di

)2

+(∆−∆2)
2,

i.e.
nM1 ≥ 4m2 +(∆−∆2)

2,

wherefrom we obtain (13).

Remark 3.13. Since (∆−∆2)
2 ≥ 0, the inequality (13) is stronger than (9).

By a similar procedure as in case of Theorem 3.12, the following statement can be
proved.

Theorem 3.14. Let G be a simple connected graph with n, n ≥ 3, vertices and m edges.
Then

M1 ≥ δ 2 +
(2m−δ )2 +(∆−∆2)

2

n−1
.

Equality holds if and only if G is regular.
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C. Das, E. Milovanović, I. Milovanović, Eds.), Mathematical Chemistry Monographs, MCM
19, Univ. Kragujevac, Kragujevac, 2017, pp. 67–153.
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