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New Bounds for the Resolvent Energy of Graphs
E. H. Zogi¢, E. R. Glogi¢

Abstract: The resolvent energy of a graph G of order n is defined as ER(G) =Y (n—A;) ™1,
where A1 > A, > --- > A, are the eigenvalues of G. Lower and upper bounds for the resolvent

1
n—A;’

n
energy of a graph, which depend on some of the parameters n, A1, A,,det(%Z4(n)) = ]
i=1

are obtained.
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1 Introduction

Let M be a square matrix of order n. The resolvent matrix, %) (z), of matrix M is
defined as [9]
P (2) = (zh, —M) ",

where [, is the unit matrix of order n and z a complex variable. As easily seen, %Zu(z)
is also a matrix of order n, that exists for all values of z except when z coincides with an
eigenvalue of M.

Let G be the simple graph, A its adjacency matrix and A; > A, > --- > A, eigenvalues
of A. The resolvent matrix, %4(z), is defined as

Ba(z) = (e, —A)",

and its eigenvalues are
I
—x
Bearing in mind that A; < n—1 for all i = 1,2,...,n, [4], we could choose z = n. Now
we have that ll,-’i =1,2,...,n are the eigenvalues of matrix %4 (n) = (nl, —A)~! and

=1,2,...,n.

n

det(Z4(n)) =

1

1
I’l*l,‘ :

[F=F
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Let G be a graph on n vertices, n > 1, with eigenvalues A1, A, ..., A,,. Its resolvent energy
is [7]

i=1

&

n—

Some remarkable properties of ER(G) were revealed in [7]. There are results about
defining ER(G) via spectral moments and characteristic polynomial of graphs, and some
bounds for the ER(G) in terms of parameters n,m,ny, where m is the number of edges and
no is a nullity of the graph. Additional properties of ER(G) can be also found in the recent
papers [1, 5, 6, 11].

In this paper, we obtained some new lower and upper bounds for the resolvent energy
of a graph in terms of n,A,, 4, and det(%x(n)).

2 Some common inequalities and preliminary lemmas

Now, we introduce some common inequalities which we need for our proofs in the section
of main results.

Lemma 2.1 [8] Leta;,,,RER, 0<r<a; <R i=1,...,n. Then

2
n;a?— (Zai) > g(R—r)z. )

i=1

n
Lemma 2.2 [8] Leta;,p;,,RER, 0<r<a; <R i=1,...n, Y pi=1. Then
i=1

Zpla,+rRZ—<r—|—R (2)

Lemma 2.3 [10] Leta; c R",i=1,...,n. Then

% n 2 n n %
(n—l)X‘Iai—&—n(Hai) 2(2{@) 22a,-+n(n—1) (Ha,) ) 3)

i=1

Lemma 2.4 [8] Let a;,p;,,RER, 0<r<a; <R i=1,...,n, Zp,—l Then

n n pl
i:le,a’lzlcT, =4 (\[ \[) (4)

Lemma 2.5 [3] Let0<a; < <a; < <ap < -+ < ay, p1,P2,---, Pn be positive real
numbers such that p1+ pa+-- +pn—1andQ,_p1+p2—|— -+ pi, Ry = pr+Pis1+ P
Then )
1 Ry (ay — a;
&4_&4_...4_&_ > Q k(k ) , (5)
a a a, piay+p2az+---+ ppan a,-ak(Qiai—i-Rkak)
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with equality for ay = ay = -+ = aj,a = Ao = -+ = Ay, Aj+] = Ajrp = -+ = Ay =
Qiai+Ryax
Oi+Ry -~

Lemma 2.6 [2] Let py, pa, ..., pn be non-negative real numbers and a, ,as, ...,a, and by, b,, ...

real numbers with the properties 0 < ry < a; <R} < 4o and 0 < rp < b; < Ry < 4o for
eachi=1,2,...,n. Further, let S be a subset of I, = {1,2, ...,n} which minimizes the expres-

n
Y pi—% ¥ pi|. Then
€S i=1

sion

<(Ri—r)(Ra—r2) Y pi <ZP: ZPZ) (6)

1SN 1§ €S

n n
ZP:‘ZP: ZP:%ZPI i
i=1 i=1

Lemma 2.7 [4] A graph has one eigenvalue if and only if it is totally disconnected. A graph
has two distinct eigenvalues Ay > Ay with multiplicities my and my if and only if it consists
of my complete graphs of order Ay + 1. In that case, Ay = —1 and my = mA;.

Lemma 2.8 [8] Let a = (a;),b = (b;),c = (c;) be three sequences of real numbers of the
same monotonicity and p = (p;) sequence of real number. Then

2
n n n n n
Y pi| Y piaibici> ) piai} pibi Y pici. (7
i=1 i=1 Py s e |
If a = (a;) and b = (b;) are oppositely ordered, then the sense of ineqality (7) reverses.

3 Main results
We represent some new lower and upper bounds for the resolvent energy of graphs.

Theorem 3.1 Ler G be a graph on n vertices with eigenvalues Ay > A, > -+ > A,,. Then

n (\/n—)Ln—\/n—/'Ll)z.

1
ER(G) > n(det(Z, n . 8
(6) 2 n(det(@am)) + 55 ®)
Equality is attained if and only if G = K.
Proof. Let’s consider inequalities (1) and (3), where we could choose r = L_R=

\/nl—/ll ,a; = \/nli,z =1,...,n, to obtain

2 2
1 1 /L 1 n 1 1
”i_zln—li_<i_lﬁn—xi> Zz(m-al‘m—aﬂ) | ®

(;ﬁ) Egn_kiﬁLnn—l (HF> (10)
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From the definition of the resolvent energy of graph, ER(G) = ¥ - 1 - and by (9), we

[

]

(£ i) 5l )

A N ey s e
ER—l—n(n—l)(Hn_;Li) Ty (n—A1)(n—A,)

(\/n—ln—\/n—ll)z
(n—M)n—»~,)

have

nER

v

v

= ER+n(n—1)(det(%a(n)))" +

NS

where in the second inequality we used (10). Now, it follows that

1 n (Vn—2,—vn—2A)?
ER(G) > n(det(%4(n)))» + . .
If G = K, then ER(K,,) = 1 and in (8) equality holds.
If equality holds in (8) then equality is attained in (9) i (10), from wich follows that
M =A =---=A,. By the Lemma 2.7 it follows that G = K. O

Theorem 3.2 Let G be a graph on n vertices with eigenvalues Ay > A, > -+ > A,,. Then

nz—i-(n—ll)(n—l,,)'

ER(G) > 11

(©)2 n(2n—A1 —Ay) (h

Proof. Using Chebyshev inequality for 3 sequences (7) and using inequality (2), for a¢; =
,,%ppi = %,i =1,..,n,r= n_l/l ,R= n—l/ll we obtain a lower bound (11). ]

Theorem 3.3 Let G be a graph on n vertices with eigenvalues Ay > A, > -+ > A,,. Then

(A — 21)?
RO 2 G ) = A =T — )

(12)

Proof. Fora;=n—A;,p; = %,i =1,...n, Qi =R, = %, the inequality (5) transforms into

An—A1)?
ER(G) > 1+ (n_;“)(n(_xn)(lz)n—/ll—/ln)' -

Theorem 3.4 Let G be a graph on n vertices with eigenvalues Ay > A, > -+ > A,,. Then

n—A—A)?
ER(G) < %. ((nz_ M’l)l(n _7L A)n)' (13)

Proof. Using p; = %,ai =-—i=1.,nr= —]/1 ,R= n_]—/h in the (4) we obtain the upper

n

bound (13). ]
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Theorem 3.5 Let G be a graph on n vertices with eigenvalues Ay > A, > -+ > A,,. Then

(A1 — )2 n?
(=M= M)? n—1

a(n) +n(det(%4(n))" < ER(G)

(ll _An)z
T (n—M)*(n—A,)

S =

5 n?ou(n) 4 n(det(Zu(n))n .

Proof. The proof follows from the inequality (6) for a; = b; =

nfl,-
1 . 1
7%’1_%,& =R, = e O
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