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New Bounds for the Resolvent Energy of Graphs

E. H. Zogić, E. R. Glogić

Abstract: The resolvent energy of a graph G of order n is defined as ER(G) = ∑n
i=1(n−λi)

−1,
where λ1 ≥ λ2 ≥ ·· · ≥ λn are the eigenvalues of G. Lower and upper bounds for the resolvent

energy of a graph, which depend on some of the parameters n,λ1,λn,det(RA(n)) =
n
∏
i=1

1
n−λi

,

are obtained.
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1 Introduction

Let M be a square matrix of order n. The resolvent matrix, RM(z), of matrix M is
defined as [9]

RM(z) = (zIn −M)−1 ,

where In is the unit matrix of order n and z a complex variable. As easily seen, RM(z)
is also a matrix of order n, that exists for all values of z except when z coincides with an
eigenvalue of M.

Let G be the simple graph, A its adjacency matrix and λ1 ≥ λ2 ≥ ·· · ≥ λn eigenvalues
of A. The resolvent matrix, RA(z), is defined as

RA(z) = (zIn −A)−1,

and its eigenvalues are

1
z−λi

, i = 1,2, ...,n.

Bearing in mind that λi ≤ n− 1 for all i = 1,2, ...,n, [4], we could choose z = n. Now
we have that 1

n−λi
, i = 1,2, ...,n are the eigenvalues of matrix RA(n) = (nIn − A)−1 and

det(RA(n)) =
n
∏
i=1

1
n−λi

.
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Let G be a graph on n vertices, n> 1, with eigenvalues λ1,λ2, ...,λn. Its resolvent energy
is [7]

ER(G) =
n

∑
i=1

1
n−λi

.

Some remarkable properties of ER(G) were revealed in [7]. There are results about
defining ER(G) via spectral moments and characteristic polynomial of graphs, and some
bounds for the ER(G) in terms of parameters n,m,n0, where m is the number of edges and
n0 is a nullity of the graph. Additional properties of ER(G) can be also found in the recent
papers [1, 5, 6, 11].

In this paper, we obtained some new lower and upper bounds for the resolvent energy
of a graph in terms of n,λ1,λn and det(RA(n)).

2 Some common inequalities and preliminary lemmas

Now, we introduce some common inequalities which we need for our proofs in the section
of main results.

Lemma 2.1 [8] Let ai,r,R ∈ R, 0 < r ≤ ai ≤ R, i = 1, ...,n. Then

n
n

∑
i=1

a2
i −

(
n

∑
i=1

ai

)2

≥ n
2
(R− r)2. (1)

Lemma 2.2 [8] Let ai, pi,r,R ∈ R, 0 < r ≤ ai ≤ R, i = 1, ...,n,
n
∑

i=1
pi = 1. Then

n

∑
i=1

piai + rR
n

∑
i=1

pi

ai
≤ r+R. (2)

Lemma 2.3 [10] Let ai ∈ R+, i = 1, ...,n. Then

(n−1)
n

∑
i=1

ai +n

(
n

∏
i=1

ai

) 1
n

≥

(
n

∑
i=1

√
ai

)2

≥
n

∑
i=1

ai +n(n−1)

(
n

∏
i=1

ai

) 1
n

. (3)

Lemma 2.4 [8] Let ai, pi,r,R ∈ R, 0 < r ≤ ai ≤ R, i = 1, ...,n,
n
∑

i=1
pi = 1. Then

n

∑
i=1

piai

n

∑
i=1

pi

ai
≤ 1

4

(√
R
r
+

√
r
R

)2

. (4)

Lemma 2.5 [3] Let 0 < a1 ≤ ·· · ≤ ai ≤ ·· · ≤ ak ≤ ·· · ≤ an, p1, p2, ..., pn be positive real
numbers such that p1+ p2+ · · ·+ pn = 1 and Qi = p1+ p2+ · · ·+ pi,Rk = pk+ pk+1+ · · · pn.
Then

p1

a1
+

p2

a2
+ · · ·+ pn

an
− 1

p1a1 + p2a2 + · · ·+ pnan
≥ QiRk(ak −ai)

2

aiak(Qiai +Rkak)
, (5)
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with equality for a1 = a2 = · · · = ai,ak = ak+1 = · · · = an,ai+1 = ai+2 = · · · = ak−1 =
Qiai+Rkak

Qi+Rk
.

Lemma 2.6 [2] Let p1, p2, ..., pn be non-negative real numbers and a1,a2, ...,an and b1,b2, ...,bn

real numbers with the properties 0 < r1 ≤ ai ≤ R1 < +∞ and 0 < r2 ≤ bi ≤ R2 < +∞ for
each i = 1,2, ...,n. Further, let S be a subset of In = {1,2, ...,n} which minimizes the expres-

sion
∣∣∣∣∑
i∈S

pi − 1
2

n
∑

i=1
pi

∣∣∣∣ . Then

∣∣∣∣∣ n

∑
i=1

pi

n

∑
i=1

piaibi −
n

∑
i=1

piai

n

∑
i=1

pibi

∣∣∣∣∣≤ (R1 − r1)(R2 − r2)∑
i∈S

pi

(
n

∑
i=1

pi −∑
i∈S

pi

)
. (6)

Lemma 2.7 [4] A graph has one eigenvalue if and only if it is totally disconnected. A graph
has two distinct eigenvalues λ1 > λ2 with multiplicities m1 and m2 if and only if it consists
of m1 complete graphs of order λ1 +1. In that case, λ2 =−1 and m2 = m1λ1.

Lemma 2.8 [8] Let a = (ai),b = (bi),c = (ci) be three sequences of real numbers of the
same monotonicity and p = (pi) sequence of real number. Then(

n

∑
i=1

pi

)2 n

∑
i=1

piaibici ≥
n

∑
i=1

piai

n

∑
i=1

pibi

n

∑
i=1

pici. (7)

If a = (ai) and b = (bi) are oppositely ordered, then the sense of ineqality (7) reverses.

3 Main results

We represent some new lower and upper bounds for the resolvent energy of graphs.

Theorem 3.1 Let G be a graph on n vertices with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. Then

ER(G)≥ n(det(RA(n)))
1
n +

n
2(n−1)

· (
√

n−λn −
√

n−λ1)
2

(n−λ1)(n−λn)
. (8)

Equality is attained if and only if G = Kn.

Proof. Let’s consider inequalities (1) and (3), where we could choose r = 1√
n−λn

,R =
1√

n−λ1
,ai =

1√
n−λi

, i = 1, ...,n, to obtain

n
n

∑
i=1

1
n−λi

−

(
n

∑
i=1

1√
n−λi

)2

≥ n
2

(
1√

n−λ1
− 1√

n−λn

)2

. (9)

(
n

∑
i=1

1√
n−λi

)2

≥
n

∑
i=1

1
n−λi

+n(n−1)

(
n

∏
i=1

1√
n−λi

) 1
n

. (10)
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From the definition of the resolvent energy of graph, ER(G) =
n
∑

i=1

1
n−λi

, and by (9), we

have

nER ≥

(
n

∑
i=1

1√
n−λi

)2

+
n
2

(
1√

n−λ1
− 1√

n−λn

)2

≥ ER+n(n−1)

(
n

∏
i=1

1
n−λi

) 1
n

+
n
2
· (
√

n−λn −
√

n−λ1)
2

(n−λ1)(n−λn)

= ER+n(n−1)(det(RA(n)))
1
n +

n
2
· (
√

n−λn −
√

n−λ1)
2

(n−λ1)(n−λn)
,

where in the second inequality we used (10). Now, it follows that

ER(G)≥ n(det(RA(n)))
1
n +

n
2(n−1)

· (
√

n−λn −
√

n−λ1)
2

(n−λ1)(n−λn)
.

If G = Kn then ER(Kn) = 1 and in (8) equality holds.
If equality holds in (8) then equality is attained in (9) i (10), from wich follows that

λ1 = λ2 = · · ·= λn. By the Lemma 2.7 it follows that G = Kn. �

Theorem 3.2 Let G be a graph on n vertices with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. Then

ER(G)≥ n2 +(n−λ1)(n−λn)

n(2n−λ1 −λn)
. (11)

Proof. Using Chebyshev inequality for 3 sequences (7) and using inequality (2), for ai =
1

n−λi
, pi =

1
n , i = 1, ...,n, r = 1

n−λn
,R = 1

n−λ1
we obtain a lower bound (11). �

Theorem 3.3 Let G be a graph on n vertices with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. Then

ER(G)≥ 1+
(λn −λ1)

2

(n−λ1)(n−λn)(2n−λ1 −λn)
(12)

Proof. For ai = n−λi, pi =
1
n , i = 1, ...,n, Qi = Rk =

1
n , the inequality (5) transforms into

ER(G)≥ 1+ (λn−λ1)
2

(n−λ1)(n−λn)(2n−λ1−λn)
. �

Theorem 3.4 Let G be a graph on n vertices with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. Then

ER(G)≤ 1
4
· (2n−λ1 −λn)

2

(n−λ1)(n−λn)
. (13)

Proof. Using pi =
1
n ,ai =

1
n−λi

, i= 1, ...,n,r = 1
n−λn

,R= 1
n−λ1

, in the (4) we obtain the upper
bound (13). �
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Theorem 3.5 Let G be a graph on n vertices with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. Then

− (λ1 −λn)
2

(n−λ1)2(n−λn)2 ·
n2

n−1
α(n)+n(det(RA(n))

1
n ≤ ER(G)

≤ (λ1 −λn)
2

(n−λ1)2(n−λn)2 ·n
2α(n)+n(det(RA(n))

1
n .

Proof. The proof follows from the inequality (6) for ai = bi =
1√

n−λi
, i = 1, ...,n,r1 = r2 =

1√
n−λn

,R1 = R2 =
1√

n−λ1
. �
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Unicyclic, Bicyclic and Tricyclic Graphs, MATCH Commun. Math. Comput. Chem. 77 (2017)
95-104.
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