SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: APPL. MATH. INFORM. AND MECH. vol. 9, 2 (2017), 187-191.

New Bounds for the Resolvent Energy of Graphs

E. H. Zogić, E. R. Glogić

Abstract: The resolvent energy of a graph *G* of order *n* is defined as $ER(G) = \sum_{i=1}^{n} (n - \lambda_i)^{-1}$, where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are the eigenvalues of *G*. Lower and upper bounds for the resolvent energy of a graph, which depend on some of the parameters $n, \lambda_1, \lambda_n, \det(\mathscr{R}_A(n)) = \prod_{i=1}^{n} \frac{1}{n - \lambda_i}$, are obtained.

Keywords: resolvent energy, graph, inequalities

1 Introduction

Let *M* be a square matrix of order *n*. The resolvent matrix, $\mathscr{R}_M(z)$, of matrix *M* is defined as [9]

$$\mathscr{R}_M(z) = (zI_n - M)^{-1},$$

where I_n is the unit matrix of order n and z a complex variable. As easily seen, $\mathscr{R}_M(z)$ is also a matrix of order n, that exists for all values of z except when z coincides with an eigenvalue of M.

Let G be the simple graph, A its adjacency matrix and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ eigenvalues of A. The resolvent matrix, $\mathscr{R}_A(z)$, is defined as

$$\mathscr{R}_A(z) = (zI_n - A)^{-1},$$

and its eigenvalues are

$$\frac{1}{z-\lambda_i}, i=1,2,\dots,n.$$

Bearing in mind that $\lambda_i \leq n-1$ for all i = 1, 2, ..., n, [4], we could choose z = n. Now we have that $\frac{1}{n-\lambda_i}, i = 1, 2, ..., n$ are the eigenvalues of matrix $\mathscr{R}_A(n) = (nI_n - A)^{-1}$ and $\det(\mathscr{R}_A(n)) = \prod_{i=1}^n \frac{1}{n-\lambda_i}$.

Manuscript received June 17, 2017. ; accepted October 21, 2017.

E. H. Zogić and E. R. Glogić are with the State University of Novi Pazar, Department of Mathematical Sciences, Novi Pazar, Serbia

Let *G* be a graph on *n* vertices, n > 1, with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Its resolvent energy is [7]

$$ER(G) = \sum_{i=1}^{n} \frac{1}{n - \lambda_i}.$$

Some remarkable properties of ER(G) were revealed in [7]. There are results about defining ER(G) via spectral moments and characteristic polynomial of graphs, and some bounds for the ER(G) in terms of parameters n, m, n_0 , where *m* is the number of edges and n_0 is a nullity of the graph. Additional properties of ER(G) can be also found in the recent papers [1, 5, 6, 11].

In this paper, we obtained some new lower and upper bounds for the resolvent energy of a graph in terms of n, λ_1, λ_n and det $(\mathscr{R}_A(n))$.

2 Some common inequalities and preliminary lemmas

Now, we introduce some common inequalities which we need for our proofs in the section of main results.

Lemma 2.1 [8] *Let* $a_i, r, R \in \mathbb{R}, 0 < r \le a_i \le R, i = 1, ..., n$. *Then*

$$n\sum_{i=1}^{n}a_{i}^{2} - \left(\sum_{i=1}^{n}a_{i}\right)^{2} \ge \frac{n}{2}(R-r)^{2}.$$
(1)

Lemma 2.2 [8] Let $a_i, p_i, r, R \in \mathbb{R}, 0 < r \le a_i \le R, i = 1, ..., n, \sum_{i=1}^n p_i = 1$. Then

$$\sum_{i=1}^{n} p_i a_i + rR \sum_{i=1}^{n} \frac{p_i}{a_i} \le r + R.$$
 (2)

Lemma 2.3 [10] *Let* $a_i \in \mathbb{R}^+, i = 1, ..., n$. *Then*

$$(n-1)\sum_{i=1}^{n}a_{i}+n\left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}} \ge \left(\sum_{i=1}^{n}\sqrt{a_{i}}\right)^{2} \ge \sum_{i=1}^{n}a_{i}+n(n-1)\left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}.$$
 (3)

Lemma 2.4 [8] Let $a_i, p_i, r, R \in \mathbb{R}, 0 < r \le a_i \le R, i = 1, ..., n, \sum_{i=1}^n p_i = 1$. Then

$$\sum_{i=1}^{n} p_i a_i \sum_{i=1}^{n} \frac{p_i}{a_i} \le \frac{1}{4} \left(\sqrt{\frac{R}{r}} + \sqrt{\frac{r}{R}} \right)^2.$$

$$\tag{4}$$

Lemma 2.5 [3] Let $0 < a_1 \le \dots \le a_i \le \dots \le a_k \le \dots \le a_n$, p_1, p_2, \dots, p_n be positive real numbers such that $p_1 + p_2 + \dots + p_n = 1$ and $Q_i = p_1 + p_2 + \dots + p_i$, $R_k = p_k + p_{k+1} + \dots + p_n$. Then

$$\frac{p_1}{a_1} + \frac{p_2}{a_2} + \dots + \frac{p_n}{a_n} - \frac{1}{p_1 a_1 + p_2 a_2 + \dots + p_n a_n} \ge \frac{Q_i R_k (a_k - a_i)^2}{a_i a_k (Q_i a_i + R_k a_k)},$$
(5)

with equality for $a_1 = a_2 = \cdots = a_i, a_k = a_{k+1} = \cdots = a_n, a_{i+1} = a_{i+2} = \cdots = a_{k-1} = \frac{Q_i a_i + R_k a_k}{Q_i + R_k}$.

Lemma 2.6 [2] Let $p_1, p_2, ..., p_n$ be non-negative real numbers and $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ real numbers with the properties $0 < r_1 \le a_i \le R_1 < +\infty$ and $0 < r_2 \le b_i \le R_2 < +\infty$ for each i = 1, 2, ..., n. Further, let S be a subset of $I_n = \{1, 2, ..., n\}$ which minimizes the expression of the properties $I_n = \{1, 2, ..., n\}$ where $I_n = \{1, 2, ..., n\}$ and $I_n = \{1, 2, ..., n\}$ where $I_n = \{1, 2, ..., n\}$ and $I_n = \{1, 2, ..., n\}$ where $I_n = \{1, 2, ..., n\}$ and $I_n = \{1, 2, ..., n\}$ where $I_n = \{1, 2, ..., n\}$ and $I_n = \{1, 2, ..., n\}$ and

$$sion \left| \sum_{i \in S} p_i - \frac{1}{2} \sum_{i=1}^n p_i \right|. Then \\ \left| \sum_{i=1}^n p_i \sum_{i=1}^n p_i a_i b_i - \sum_{i=1}^n p_i a_i \sum_{i=1}^n p_i b_i \right| \le (R_1 - r_1)(R_2 - r_2) \sum_{i \in S} p_i \left(\sum_{i=1}^n p_i - \sum_{i \in S} p_i \right).$$
(6)

Lemma 2.7 [4] A graph has one eigenvalue if and only if it is totally disconnected. A graph has two distinct eigenvalues $\lambda_1 > \lambda_2$ with multiplicities m_1 and m_2 if and only if it consists of m_1 complete graphs of order $\lambda_1 + 1$. In that case, $\lambda_2 = -1$ and $m_2 = m_1\lambda_1$.

Lemma 2.8 [8] Let $a = (a_i), b = (b_i), c = (c_i)$ be three sequences of real numbers of the same monotonicity and $p = (p_i)$ sequence of real number. Then

$$\left(\sum_{i=1}^{n} p_{i}\right)^{2} \sum_{i=1}^{n} p_{i} a_{i} b_{i} c_{i} \geq \sum_{i=1}^{n} p_{i} a_{i} \sum_{i=1}^{n} p_{i} b_{i} \sum_{i=1}^{n} p_{i} c_{i}.$$
(7)

If $a = (a_i)$ and $b = (b_i)$ are oppositely ordered, then the sense of inequality (7) reverses.

3 Main results

We represent some new lower and upper bounds for the resolvent energy of graphs.

Theorem 3.1 Let G be a graph on n vertices with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

$$ER(G) \ge n(\det(\mathscr{R}_A(n)))^{\frac{1}{n}} + \frac{n}{2(n-1)} \cdot \frac{(\sqrt{n-\lambda_n} - \sqrt{n-\lambda_1})^2}{(n-\lambda_1)(n-\lambda_n)}.$$
(8)

Equality is attained if and only if $G = \overline{K}_n$.

Proof. Let's consider inequalities (1) and (3), where we could choose $r = \frac{1}{\sqrt{n-\lambda_n}}, R = \frac{1}{\sqrt{n-\lambda_1}}, a_i = \frac{1}{\sqrt{n-\lambda_i}}, i = 1, ..., n$, to obtain

$$n\sum_{i=1}^{n}\frac{1}{n-\lambda_{i}} - \left(\sum_{i=1}^{n}\frac{1}{\sqrt{n-\lambda_{i}}}\right)^{2} \ge \frac{n}{2}\left(\frac{1}{\sqrt{n-\lambda_{1}}} - \frac{1}{\sqrt{n-\lambda_{n}}}\right)^{2}.$$
(9)

$$\left(\sum_{i=1}^{n} \frac{1}{\sqrt{n-\lambda_i}}\right)^2 \ge \sum_{i=1}^{n} \frac{1}{n-\lambda_i} + n(n-1) \left(\prod_{i=1}^{n} \frac{1}{\sqrt{n-\lambda_i}}\right)^{\frac{1}{n}}.$$
(10)

From the definition of the resolvent energy of graph, $ER(G) = \sum_{i=1}^{n} \frac{1}{n-\lambda_i}$, and by (9), we have

$$nER \geq \left(\sum_{i=1}^{n} \frac{1}{\sqrt{n-\lambda_i}}\right)^2 + \frac{n}{2} \left(\frac{1}{\sqrt{n-\lambda_1}} - \frac{1}{\sqrt{n-\lambda_n}}\right)^2$$

$$\geq ER + n(n-1) \left(\prod_{i=1}^{n} \frac{1}{n-\lambda_i}\right)^{\frac{1}{n}} + \frac{n}{2} \cdot \frac{(\sqrt{n-\lambda_n} - \sqrt{n-\lambda_1})^2}{(n-\lambda_1)(n-\lambda_n)}$$

$$= ER + n(n-1) (\det(\mathscr{R}_A(n)))^{\frac{1}{n}} + \frac{n}{2} \cdot \frac{(\sqrt{n-\lambda_n} - \sqrt{n-\lambda_1})^2}{(n-\lambda_1)(n-\lambda_n)},$$

where in the second inequality we used (10). Now, it follows that

$$ER(G) \ge n(\det(\mathscr{R}_A(n)))^{\frac{1}{n}} + \frac{n}{2(n-1)} \cdot \frac{(\sqrt{n-\lambda_n} - \sqrt{n-\lambda_1})^2}{(n-\lambda_1)(n-\lambda_n)}.$$

If $G = \overline{K}_n$ then $ER(\overline{K}_n) = 1$ and in (8) equality holds.

If equality holds in (8) then equality is attained in (9) i (10), from which follows that $\lambda_1 = \lambda_2 = \cdots = \lambda_n$. By the Lemma 2.7 it follows that $G = \overline{K}_n$.

Theorem 3.2 Let G be a graph on n vertices with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

$$ER(G) \ge \frac{n^2 + (n - \lambda_1)(n - \lambda_n)}{n(2n - \lambda_1 - \lambda_n)}.$$
(11)

Proof. Using Chebyshev inequality for 3 sequences (7) and using inequality (2), for $a_i = \frac{1}{n-\lambda_i}$, $p_i = \frac{1}{n}$, i = 1, ..., n, $r = \frac{1}{n-\lambda_n}$, $R = \frac{1}{n-\lambda_1}$ we obtain a lower bound (11).

Theorem 3.3 Let G be a graph on n vertices with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

$$ER(G) \ge 1 + \frac{(\lambda_n - \lambda_1)^2}{(n - \lambda_1)(n - \lambda_n)(2n - \lambda_1 - \lambda_n)}$$
(12)

Proof. For $a_i = n - \lambda_i$, $p_i = \frac{1}{n}$, i = 1, ..., n, $Q_i = R_k = \frac{1}{n}$, the inequality (5) transforms into $ER(G) \ge 1 + \frac{(\lambda_n - \lambda_1)^2}{(n - \lambda_1)(n - \lambda_n)(2n - \lambda_1 - \lambda_n)}$.

Theorem 3.4 Let G be a graph on n vertices with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

$$ER(G) \le \frac{1}{4} \cdot \frac{(2n - \lambda_1 - \lambda_n)^2}{(n - \lambda_1)(n - \lambda_n)}.$$
(13)

Proof. Using $p_i = \frac{1}{n}$, $a_i = \frac{1}{n-\lambda_i}$, $i = 1, ..., n, r = \frac{1}{n-\lambda_n}$, $R = \frac{1}{n-\lambda_1}$, in the (4) we obtain the upper bound (13).

Theorem 3.5 Let *G* be a graph on *n* vertices with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

$$-\frac{(\lambda_1-\lambda_n)^2}{(n-\lambda_1)^2(n-\lambda_n)^2}\cdot\frac{n^2}{n-1}\alpha(n)+n\left(\det(\mathscr{R}_A(n))^{\frac{1}{n}}\leq ER(G)\right)$$
$$\leq \frac{(\lambda_1-\lambda_n)^2}{(n-\lambda_1)^2(n-\lambda_n)^2}\cdot n^2\alpha(n)+n\left(\det(\mathscr{R}_A(n))^{\frac{1}{n}}\right).$$

Proof. The proof follows from the inequality (6) for $a_i = b_i = \frac{1}{\sqrt{n-\lambda_i}}, i = 1, ..., n, r_1 = r_2 = \frac{1}{\sqrt{n-\lambda_n}}, R_1 = R_2 = \frac{1}{\sqrt{n-\lambda_1}}.$

References

- L. E. Allem, J. Capaverde, V. Trevisan, I. Gutman, E. Zogić, E. Glogić, Resolvent Energy of Unicyclic, Bicyclic and Tricyclic Graphs, *MATCH Commun. Math. Comput. Chem.* 77 (2017) 95-104.
- [2] Andrica, D., Badea, C., Grüs inequality for positive linear functionals, *Period. Math. Hungar*, 19 (1988), no. 2, 155-167.
- [3] V. Cirtoaje, The Best Lower Bound Depended on Two Fixed Variables for Jensens Inequality with Ordered Variables, *Journal of Inequalities and Applications*, 2010 (2010), 1-12.
- [4] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [5] Z. Du, Asymptotic Expressions for Resolvent Energies of Paths and Cycles, MATCH Commun. Math. Comput. Chem. 77 (2017) 85-94.
- [6] M. Ghebleh, A. Kanso, D. Stevanović, On Trees with Smallest Resolvent Energy, MATCH Commun. Math. Comput. Chem. 77 (2017) 635-654.
- [7] I. Gutman, B. Furtula, E. Zogić, E. Glogić Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 279-290.
- [8] D. S. Mitrinović, P. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
- [9] T.S. Shores, Linear Algebra and Matrix Analysis, Springer, New York, 2007.
- [10] B. Zhou, I. Gutman, T. Aleksić A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441-446.
- [11] Z. Zhu, Some extremal properties of the resolvent energy, Estrada and resolvent Estrada indices of graphs, *Journal of Mathematical Analysis and Applications* 447 (2017) 957-970.