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Introducing Affine Invariance to IFS

Lj. M. Kocić, E. Hadzieva, S. Gegovska – Zajkova

Abstract: The original definition of the IFS with affine contractive mappings is an important
and handy tool for constructive approach to fractal sets. But, in spite of clear definition, the
concept of IFS does not allow many possibilities in the sense of modeling of such sets, typically
being fairly complicated. One step in direction of improving the concept of IFS consists in
introducing AIFS, a variant of IFS that permits affine invariance property which is vital from
the point of modeling. The theory is supported by comprehensive examples.
Keywords: fractals, IFS, AIFS, CAGD properties

1 Introduction

Let S = {Rm; w1,w2, . . . ,wn} be a hyperbolic iterated function system (IFS) defined on the
Euclidean metric space (Rm,dE), where

wi(x) = Aix+bi, x ∈ Rm, i = 1,2, ...,n,

Ai is an m×m real matrix, bi is an m-dimensional real vector and si < 1, i = 1,2, . . . ,n are
the corresponding Lipschitz factors of wi’s. Let H (Rm) be the space of nonempty compact
subsets of Rm. Let h stand for Hausdorff metric, induced by dE , i.e.

h(A, B) = max
{

max
a∈A

min
b∈B

dE(a, b), max
b∈B

min
a∈A

dE(b, a)
}
, ∀A, B ∈ H (Rm) ,

then (H (Rm) , h) is a complete metric space ([1]). Associated with the IFS S is so called
Hutchinson operator WS defined on this space by

WS (B) =
n∪

i=1

wi (B) , ∀B ∈ H (Rm) .
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Note that WS is a contractive mapping on the space (H (Rm) , h) with contractivity factor
s = maxi{ si }, therefore (by the contraction mapping theorem) WS has a unique fixed point
A, called the attractor of the IFS S .

Here are some technical notations. A (non-degenerate) m-dimensional simplex P̂m

(or just m-simplex) is the convex hull of a set Pm, of m+1 affinely independent points
p1, p2 , . . . , pm+1 in the Euclidean space of dimension ≥m, P̂m = conv{p1, p2 , . . . , pm+1}.
Analogously, the standard m-simplex is T̂m = conv Tm = conv{e1, e2 , . . . , em+1}⊂Rm+1

where ei, i = 1, 2, . . . , m+1, are the unit vectors of (m+1)-dimensional orthogonal frame
(have all zero-coordinates except 1 at the i-th place). The affine space defined by the stan-
dard m-simplex will be denoted by Vm, i.e. Vm = aff{e1, e2 , . . . , em+1} ⊂ Rm+1.

Let S = [si j]
m+1
i, j=1 be an (m+1)×(m+1) row-stochastic real matrix (the matrix which rows

sum up to 1).

Definition 1.1 We refer to the linear mapping L : Rm+1 → Rm+1, such that L (x) = ST x
as the linear mapping associated with S.

Definition 1.2 Let P̂m be a non-degenerate simplex and let {Si}n
i=1 be a set of real square

nonsingular row-stochastic matrices of order m+1. The system Ω(P̂m)= {P̂m;S1,S2, . . . ,Sn}
is called (hyperbolic) Affine invariant IFS (AIFS), provided that the linear mappings asso-
ciated with Si are contractions in (Rm, dE) ([2]-[4]). The AIFS defined in the affine space
induced by the standard simplex {T̂m;S1,S2, . . . ,Sn} is called the standard AIFS. The cor-
responding Hutchinson operator is W (P) =

∪
i
(
ST

i ·P
)
, for any m-simplex P.

The concept of AIFS is closely related to affine geometry of barycentric (areal) co-
ordinates and subdivision phenomena ([2], [3], [4], [5], [6]). To clear the things up, the
following mathematical apparatus is of vital importance.

The affine space Vm can be treated as a vector space with origin em+1 provided that
Vm is parallel with the vector space Vm= span{u1,u2, . . . ,um} ⊂ Rm+1, ui = ei − em+1,
i= 1,2, ...,m. So, from now on, the Vm will be treated as a vector space unless it is otherwise
specified.

The set Um = {u1, u2, . . . , um} of linearly independent vectors that spans the vector

space Vm is neither orthogonal nor normalized, since
⟨
ui,u j

⟩
=

{
1, i ̸= j,
2, i = j.

By means

of the Gram-Schmidt procedure the set Um is transformed into an orthonormal basis Vm =
{v1, v2, . . . , vm} of Vm. This new orthonormal basis is represented by the m×(m+1) matrix

Vm =


v11 v12 · · · v1,m+1
v21 v22 v2,m+1
...

. . .
vm,1 vm,2 vm,m+1

=


vT

1
vT

2
...

vT
m

 . (1)

The relation between the barycentric coordinates of a point r∈ Vm w.r.t. the affine basis
{e1, e2, . . . ,em+1}, r = (ρ1, ρ2, . . . , ρm+1), (ρm+1 = 1−∑m

i=1 ρi) and the coordinates in the
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orthonormal basis Vm, x = (x1, x2, . . . , xm), of the same point is given by
ρ1
ρ2
...

ρm

=


v11 v21 · · · vm,1
v12 v22 vm,2
...

. . .
v1,m v2,m vm,m




x1
x2
...

xm

 , i.e. r̄ = Qmx, (2)

where Qm = Vm
T, Vm is the truncated matrix Vm, i.e., the matrix Vm given by (1), with the

last column dropped and r̄ is a truncated vector r. The inverse transformation of (2) exists
and x = Q−1

m r̄ ([5]). In [5], the items of the matrices Qm = [qi j]
m
i, j=1 and Q−1

m
=

[
q′i j

]m

i, j=1
are explicitly calculated. This result leads to the following

Lemma 1.1 The Vm-coordinates of the vertices t1, t2 , . . . , tm+1 of the standard simplex T̂m

are given by the matrix TT
m = [t1 t2 . . . tm+1] =

[
Q−1

m | 0
]
. More precisely, Tm = [ti j]

m, m+1
i=1, j=1,

where

ti j =


1√

i(i+1)
, j < i ≤ m,√

i+1
i , i = j ≤ m,

0 , i < j , i = m+1.

(3)

2 Relation between classical IFS and standard AIFS

Let x ∈ Vm be transformed by an affine transform defined on Vm, given by an m×m matrix
A and translation vector b, so that

x′ = Ax + b. (4)

By (2), r̄ ′ = Qmx′, which by (4) gives r̄ ′ = Qmx′ = Qm(Ax + b). Since x = Q−1
m r̄, the

penultimate formula is changed into
r̄ ′ = Qm(AQ−1

m r̄ + b) = QmAQ−1
m r̄+Qmb. (5)

On the other hand, it is easy to see that, if r= [ρ1 ρ2 . . . ρm+1]
T is the “full” areal coordinate

vector, then r̄ and r relate to each other as follows:

r̄ = Km · r , (6)

r = Jm · r̄ + em+1, (7)

where

Km =
[

Im | 0
]

and Jm =

[
Im

−1

]
, (8)
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are block-matrices obtained by the identity matrix by adding a zero-column or (–1) - row.
Also em+1 is the ultimate unit vector in Rm+1. So, combining (5), (6) and (7) gives

r ′ = Ãr+ b̃, (9)

where
Ã = JmQmAQ−1

m Km (10)

is the (m+1)×(m+1) matrix, and

b̃ = JmQmb+ em+1 (11)

is the (m+1)-dimensional vector. Now the following theorem is valid.

Theorem 2.1 Let the pair (A,b) defines the affine mapping x 7→ Ax + b, x ∈ Vm. Then
the corresponding linear transformation r 7→ ST r, r ∈ Vm is defined by the matrix

ST = Ã+[b̃ b̃ ... b̃︸ ︷︷ ︸
m+1

], (12)

where Ã and b̃ are given by (10) and (11).

Proof. Introducing r = ei, i = 1,2, ...,m + 1 into (9), the standard simplex vertices
{e1, e2 , . . . , em+1} are being transformed into {ρρρ1,ρρρ2, . . . ,ρρρm+1},

ρρρ i = Ãei + b̃, i = 1, ...,m+1,

or, in matrix form

[ρρρ1 ρρρ2 ...ρρρm+1 ] = Ã [e1 e2 ... em+1]+ [b̃ b̃ ... b̃︸ ︷︷ ︸
m+1

].

Since [ρρρ1 ρρρ2 ...ρρρm+1 ] = ST and [e1 e2 ... em+1] = Im+1, the (12) follows. �

Theorem 2.2 Given the row stochastic matrix S, defining the linear mapping r 7→ ST r,
r ∈ Vm. The corresponding linear transformation x 7→ Ax + b, x ∈ Vm is then given by

A = Q−1
m KmST JmQm, b = Q−1

m KmST em+1. (13)

Proof. Let r′ = ST r. Combining it with (6) gives r̄′ = KmST r. On the other hand,
x′ = Q−1

m r̄′, so that x′ = Q−1
m KmST r. By inserting (7) one gets

x′ = Q−1
m KmST Jmr̄ + Q−1

m KmST em+1

and by (2) x′ =
(
Q−1

m KmST JmQm
)

x + Q−1
m KmST em+1, which gives (13). �
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3 Applications

The Theorems 2.1 and 2.2 are helpful in connecting two spaces, the designing space Rm

and the affine space Vm. Suppose that our initial model consists of the set of simplices {P;
P1, . . . , Pn} from Rm, where Pi = A i(P) is the image of the simplex P upon the affine
mapping A i, i = 1,. . . , n. This set accomplishes our construction and fully defines our
AIFS (See Def. 1.1 and 1.2), providing the set of linear mappings L i : x 7→ ST

i x, where
L i : P 7→ Pi, is known. On the other hand, the set of subdivision matrices {S1, S2, . . . ,
Sn}, can be found by using Theorem 2.1, once the transformation Ti

m = A ∗
i (Tm) is being

determined. Here, Tm contains standard simplex’s vertices, given as in Lemma 1.1, and
T = A (P).

Let P, Pi be any pair of non-degenerate m-simplices and T is the standard m-simplex;
A and A i be affine operators defined by T = A (P), Pi = A i(P); Ti = A (Pi) and ˜A i is
defined by Ti = ˜A i(T). If the areal coordinates are in use, then the operatorsA , A i and ˜A i

can be replaced by linear transformations represented by row-stochastic matrices S, Si and
S̃i respectively. The next theorem gives relations between affine and linear operators.

Theorem 3.1 The affine mappings A , A i and ˜A i are connected by the relation

A i ◦ A ◦ ˜A −1
i ◦ A −1 = I , (14)

where I is identity mapping, and ( f ◦g)(·) = g( f (·)). In addition,

S−1 · S̃−1
i ·S ·Si = Im+1. (15)

Proof. By definition, Ti = A (Pi) = A (A i(P)). On the other hand, Ti = ˜A i(T) or
Ti = A i(A (P)). So, A (A i(P)) = A i(A (P)), wherefrom

A (P) = ˜A −1
i (A (A i(P))) ⇒ P = A −1 [ ˜A −1

i (A (A i(P)))
]
,

which, combined with supposition that P is an arbitrary simplex, yields (14). The relation
(15) is direct consequence of (14). �

Example 3.1 (Variations on Sierpinski triangle). Consider a non-degenerate 4-simplex T =
[P1 P2 P3 P4 P5]T in R4 and its images T1, T2 and T3 under three different linear mappings
performed by three row-stochastic matrices S1, S2 and S3 given in Fig. 1.

The case T = [(0, 0) (2, 1) (0, 3) (–2, 1) (0, 0)]T is shown in Figure 1a (in all cases the
R2 projections are used). Different configurations of the simplex T grossly influence the
shape of the attractor A. The Fig. 1b is obtained by choosing T = [(4, 1) (2.75, 2.5) (3.5,
4.3) (2.25, 3.5) (1, 1)]T while the attractor at Fig. 1c is generated for T = [(6, 1) (6, 6)
(3.5, 6) (1, 6) (3, 1)]T . But, in all the cases, the basic structure of the fractal set, known as
Sierpinski triangle (or gasket).
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Fig. 1.

Example 3.2 (Self affine tilling of the domain)The AIFS method can be used for tessella-
tion of the finite subset of Rd , bounded by a closed hyper-polyhedral surface σ . If σ has m
vertices and lies into d-dimensional space (d ≤ m−1), then two possibilities may occur: If
d < m− 1, σ is a projection of m-simplex on Rd ; Otherwise, σ is m-simplex itself. Now,
suppose that the AIFS Ω={T̂; S1, S2, . . . , Sn} is given, and that Ti = ST

i ·T (all i). Let the
AIFS Ω is “just touching”, which means that

∪
i T̂i = T̂, and T̂i

∩
T̂ j (all i, j) may contain

only common border points. Then, the k-th iteration of Hutchinson operator W (see Def.
1.3) applied on T̂ , W ◦k(T̂) gives self affine tilling of the domain of T̂ . Figure 2 illustrates
this process in three different settings of tilling the rectangle {P1, P2, P3, P4} in three parts
(first two rows of pictures in Fig. 2) and four parts (the last row). The difference between
the first and second partition defined by subdivision matrices S1, S2 and S3, is in matrices
S1 and S3. Namely, for the first setting,

S1 = [PT
4 PT

1 BT MT]T, S2 = [PT
2 BT MT PT

3 ]
T, S3 = [PT

4 PT
3 MT PT

4 ]
T

while for the second,

S1 = [PT
1 BT MT PT

4 ]
T, S2 = [PT

2 BT MT PT
3 ]

T, S3 = [MT PT
3 PT

4 MT]T.

The last row is defined by the setting

S1 = [PT
1 MT PT

4 PT
1 ]

T, S2 = [PT
2 MT PT

1 PT
2 ]

T,
S3 = [PT

3 MT PT
2 PT

3 ]
T, S4 = [PT

4 MT PT
3 PT

4 ]
T.
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Fig. 2.

The asymmetric subdivision of triangular areas in this case is caused by having two identical
rows in each matrix as a consequence of doubling the vertices.

4 Conclusion.

The main result of this note is given in Theorems 2.1 and 2.2, where two new formulas
are given for transforming affine into linear operators to connect IFS and AIFS, iterated
systems of contractive mappings that are used for defining and constructing fractal sets. A
by-result is Theorem 3.1, that gives a rule for both linear and affine mappings that transform
a “design” space into referential one and v.v. Two examples are elaborated. The first one
is showing the flexibility of the AIFS concept. The second indicates possible applications
that are not typically fractal in nature.
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