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New Proofs of Some Discrete Inequalities of Wirtinger’s type

I. Ž. Milovanović, E. I. Milovanović, D. Ć. Dolićanin, T. Z. Mirković

Abstract: A new approach in proving some well known inequalities of Wirtinger’ s type is
presented in this paper. Proofs are short, elegant and based on one class of inequalities for real
numbers
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1 Introduction

Let x0,x1, . . . ,, α1,α2, . . . and β1,β2, . . . are positive real numbers, whereby αk ·βk > 0, for
each k ∈ N. A classic inequality (for these numbers )

√
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βk
xk ±

√
βk

αk
xk−1

2

≥ 0 (1)

holds for these numbers if and only if

αkxk ±βkxk−1 = 0. (2)

We will show that by appropriate choice of real numbers xk,αk and βk in accordance
with inequality (1), some discrete inequalities of Wirtinger’s, i.e. Opial’s type can be de-
rived (see for example [7]). Let us note that these inequalities play an important role in
many scientific and technical areas, such as Theory of differential and difference equations
[1], Matrix theory [2], Geometry [10], etc.
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2 Main result

Case a)
Let x0,x1, . . . ,xn+1 are arbitrary real numbers with property x0 = xn+1 = 0. Having in

mind inequality (1) we have that
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If we substitute αk and βk in the above inequality with αk = sin(k− 1)t and βk = sinkt, it
becomes
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Since for each k,k ∈N, must be αkβk > 0, parameter t has to satisfy the inequality 0< t < π
n .

Therefore we can take t = π
n+1 . Now, inequality (3) becomes
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Equality on the left (right) side of inequality (4) holds if and only if xk =C ·(−1)k−1 sin kπ
n+1 ,

(xk =C · sin kπ
n+1 ), for k = 1,2, . . . ,n while C > 0 is an arbitrary constant.

Inequality (4) is discrete inequality of Opial’s type and was proved in[7]. Left side of
inequality (4) in a form of discrete inequality of Wirtinger’s type was proved in [6], and
right side in [4]. Let us note that proof of inequality (4) given in this proposal is simpler
then those given in [4, 6, 7].

Case b)

Let x0,x1, . . . ,xn are arbitrary real numbers with property x0 = 0. Then, according to (1)
we have that
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and
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If in inequality (5) αk and βk are substituted by αk = sin(2k−2)t and βk = sin2kt, then
it becomes
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Since parameter t has to satisfy 0 < t < π
2n , we take t = π

2n+1 . Now, the above inequality
becomes
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Equality in (7) holds if and only if xk =C · (−1)k−1 sin 2kπ
2k+1 , k = 1,2, . . . ,n where C > 0 is

an arbitrary constant. The inequality (7) was proved in [6] (see also [15]).
If in inequality (6) we take αk = cos(k−1)t and βk = coskt, it becomes
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Since parameter t has to satisfy 0 < t < π
2n , we take t = π

2n+1 . Now, the above inequality
becomes

2
n−1

∑
k=1

xkxk+1 ≤ 2cos
π

2n+1

n

∑
k=1

x2
k + x2

n.

i.e.
n

∑
k=1

(xk − xk−1)
2 ≥ 2

(
1− cos

π
2n+1

) n

∑
k=1

x2
k . (8)

Equality in inequality (8) holds if and only if xk =C · sin kπ
2n+1 , k = 1,2, . . . ,n where C > 0

is an arbitrary constant.
Inequality (8) was proved in [4]) in a more complicated manner.

Case c)

Let x0,x1, . . . ,xn are arbitrary real numbers with property x0 = xn = 0. Then, according
to (1) we have that
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If we replace αk and βk with αk = sinkt and βk = sin(k+1)t, the above inequality becomes
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By imposing the condition
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= 0,
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we obtain that t = π
n . Now inequality (9) becomes
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The inequality (10) has application in geometry, i.e. with convex polygons (see for
example [3, 5, 9, 11, 12, 13, 14]. Namely if in (10) we perform the following substitutions
with xk := xk cosσk and xk := xk sinσk, σ0 = σn, and then sum up the obtained inequalities,
we obtain
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After performing substitutions σk −σk−1 = γk−1, for k = 1,2, . . . ,n− 1, and σn −σn−1 =
γn−1 −π , the above inequality transforms into
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where γ0 + γ1 + . . .+ γn−1 = π . The inequality (11) has been proved in [11].
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